




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖北省石首市中考数学真题分类(勾股定理)汇编定向练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(
)A.0.7米 B.1.5米 C.2.2米 D.2.4米2、如图,P是等边三角形内的一点,且,,,以为边在外作,连接,则以下结论中不正确的是(
)A. B. C. D.3、如图,在△ABC中,AB=2,∠ABC=60°,∠ACB=45°,D是BC的中点,直线l经过点D,AE⊥l,BF⊥l,垂足分别为E,F,则AE+BF的最大值为()A. B.2 C.2 D.34、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底墙到左墙角的距离为1.5m,顶端距离地面2m,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面0.7m,那么小巷的宽度为(
)A.3.2m B.3.5m C.3.9m D.4m5、我国古代数学名著《算法统宗》有一道“荡秋千”的问题:“平地秋千未起,踏板一尺离地.送行二步与人齐,5尺人高曾记,仕女家人争蹴.良工高士素好奇,算出索长有几?”此问题可理解为:“如图,有一架秋千,当它静止时,踏板离地距离的长为尺,将它向前水平推送尺时,即尺,秋千踏板离地的距离和身高尺的人一样高,秋千的绳索始终拉得很直,试问绳索有多长?”,设秋千的绳索长为尺,根据题意可列方程为(
)A. B.C. D.6、在直线l上依次摆放着七个正方形,已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4=()A.4 B.5 C.6 D.77、如图,△ABC中,,以其三边分别向外侧作正方形,然后将整个图形放置于如图所示的长方形中,若要求图中两个阴影部分面积之和,则只需知道(
)A.以BC为边的正方形面积 B.以AC为边的正方形面积C.以AB为边的正方形面积 D.△ABC的面积第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、如图,矩形ABCD中,AD=6,AB=8.点E为边DC上的一个动点,△AD'E与△ADE关于直线AE对称,当△CD'E为直角三角形时,DE的长为__.2、《九章算术》中记载着这样一个问题:已知甲、乙两人同时从同一地点出发,甲的速度为7步/分,乙的速度为3步/分,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,那么相遇时,甲、乙各走了多远?解:如图,设甲乙两人出发后x分钟相遇.根据勾股定理可列得方程为______.3、如图,在高2米,坡角为30°的楼梯表面铺地毯,地毯的长至少需______米.4、如图,在网格中,每个小正方形的边长均为1.点A、B,C都在格点上,若BD是△ABC的高,则BD的长为__________.5、已知,在中,,,,则的面积为__.6、学习完《勾股定理》后,尹老师要求数学兴趣小组的同学测量学校旗杆的高度.同学们发现系在旗杆顶端的绳子垂到了地面并多出了一段,但这条绳子的长度未知.如图,经测量,绳子多出的部分长度为1米,将绳子沿地面拉直,绳子底端距离旗杆底端4米,则旗杆的高度为______米.7、在一棵树的5米高B处有两个猴子为抢吃池塘边水果,一只猴子爬下树跑到A处(离树10米)的池塘边.另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高_______米.8、我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是_______尺.
三、解答题(7小题,每小题10分,共计70分)1、如图所示的一块地,,,,,,求这块地的面积.2、如图②,它可以看作是由边长为a、b、c的两个直角三角形(如图①C为斜边)拼成的,其中A、C、D三点在同一条直线上,(1)请从面积出发写出一个表示a、b、c的关系的等式;(要求写出过程)(2)如图③④⑤,以直角三角形的三边为边或直径,分别向外部作正方形、半圆、等边三角形,这三个图形中面积关系满足的有_______个.(3)如图⑥,直角三角形的两直角边长分别为3,5,分别以直角三角形的三边为直径作半圆,则图中阴影部分的面积为_______.3、如图,将一个长方形纸片ABCD沿对角线AC折叠,点B落在点E处,AE交DC于点F,已知AB=4,BC=2,求折叠后重合部分的面积.4、如图,CE⊥AB于点E,BD⊥AC于点D,AB=AC.(1)求证:△ABD≌△ACE.(2)连接BC,若AD=6,CD=4,求△ABC的面积.5、勾股定理是人类最伟大的十个科学发现之一,在《周髀算经》中就有“若勾三,股四,则弦五”的记载,汉代数学家赵爽为证明勾股定理创制的“赵爽弦图”也流传至今.迄今为止已有多种证明勾股定理的方法.下面是数学课上创新小组验证过程的一部分.请认真阅读并根据他们的思路将后续的过程补充完整:将两张全等的直角三角形纸片按图所示摆放,其中,点在线段上,点在边两侧,试证明:.6、阅读理解:【问题情境】教材中小明用4张全等的直角三角形纸片拼成图1,利用此图,可以验证勾股定理吗?【探索新知】从面积的角度思考,不难发现:大正方形的面积=小正方形的面积+4个直角三角形的面积.从而得数学等式:(a+b)2=c2+4×ab,化简证得勾股定理:a2+b2=c2.【初步运用】(1)如图1,若b=2a,则小正方形面积:大正方形面积=;(2)现将图1中上方的两直角三角形向内折叠,如图2,若a=4,b=6,此时空白部分的面积为;(3)如图3,将这四个直角三角形紧密地拼接,形成风车状,已知外围轮廓(实线)的周长为24,OC=3,求该风车状图案的面积.(4)如图4,将八个全等的直角三角形紧密地拼接,记图中正方形ABCD,正方形EFGH,正方形MNKT的面积分别为S1,S2,S3,若S1+S2+S3=40,则S2=.【迁移运用】如果用三张含60°的全等三角形纸片,能否拼成一个特殊图形呢?带着这个疑问,小丽拼出图5的等边三角形,你能否仿照勾股定理的验证,发现含60°的三角形三边a、b、c之间的关系,写出此等量关系式及其推导过程.7、我市《道路交通管理条例》规定:小汽车在城市街道上的行驶速度不得超过60km/h.如图,一辆小汽车在一条城市街道上沿直道行驶,某一时刻刚好行驶到车速检测点A正前方30m的C处,2秒后又行驶到与车速检测点A相距50m的B处.请问这辆小汽车超速了吗?若超速,请求出超速了多少?-参考答案-一、单选题1、C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.【考点】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.2、C【解析】【分析】根据△ABC是等边三角形,得出∠ABC=60°,根据△BQC≌△BPA,得出∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,求出∠PBQ=60°,即可判断A;根据勾股定理的逆定理即可判断B;根据△BPQ是等边三角形,△PCQ是直角三角形即可判断D;求出∠APC=150°-∠QPC,和PC≠2QC,可得∠QPC≠30°,即可判断C.【详解】解:∵△ABC是等边三角形,∴∠ABC=60°,∵△BQC≌△BPA,∴∠CBQ=∠ABP,PB=QB=4,PA=QC=3,∠BPA=∠BQC,∴∠PBQ=∠PBC+∠CBQ=∠PBC+∠ABP=∠ABC=60°,所以A正确,不符合题意;PQ=PB=4,PQ2+QC2=42+32=25,PC2=52=25,∴PQ2+QC2=PC2,∴∠PQC=90°,所以B正确,不符合题意;∵PB=QB=4,∠PBQ=60°,∴△BPQ是等边三角形,∴∠BPQ=60°,∴∠APB=∠BQC=∠BQP+∠PQC=60°+90°=150°,所以D正确,不符合题意;∠APC=360°-150°-60°-∠QPC=150°-∠QPC,∵PC=5,QC=PA=3,∴PC≠2QC,∵∠PQC=90°,∴∠QPC≠30°,∴∠APC≠120°.所以C不正确,符合题意.故选:C.【考点】本题是三角形综合题,考查了全等三角形的性质、等边三角形的性质、勾股定理的逆定理,解决本题的关键是综合应用以上知识.3、A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【详解】解:如图,过点C作CK⊥l于点K,过点A作AH⊥BC于点H,在Rt△AHB中,∵∠ABC=60°,AB=2,∴BH=1,AH=,在Rt△AHC中,∠ACB=45°,∴AC=,∵点D为BC中点,∴BD=CD,在△BFD与△CKD中,,∴△BFD≌△CKD(AAS),∴BF=CK,延长AE,过点C作CN⊥AE于点N,可得AE+BF=AE+CK=AE+EN=AN,在Rt△ACN中,AN<AC,当直线l⊥AC时,最大值为,综上所述,AE+BF的最大值为.故选:A.【考点】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.4、C【解析】【分析】如图,在Rt△ACB中,先根据勾股定理求出AB,然后在Rt△A′BD中根据勾股定理求出BD,进而可得答案.【详解】解:如图,在Rt△ACB中,∵∠ACB=90°,BC=1.5米,AC=2米,∴AB2=1.52+22=6.25,∴AB=2.5米,在Rt△A′BD中,∵∠A′DB=90°,A′D=0.7米,BD2+A′D2=A′B2,∴BD2+0.72=6.25,∴BD2=5.76,∵BD>0,∴BD=2.4米,∴CD=BC+BD=1.5+2.4=3.9米.故选:C.【考点】本题考查了勾股定理的应用,正确理解题意、熟练掌握勾股定理是解题的关键.5、C【解析】【分析】根据勾股定理列方程即可得出结论.【详解】解:由题意知:OC=x-(5-1),P'C=10,OP'=x,在Rt△OCP'中,由勾股定理得:[x-(5-1)]2+102=x2.即.故选:C.【考点】本题主要考查了勾股定理的应用,读懂题意是解题的关键.6、A【解析】【详解】解:由勾股定理的几何意义可知:S1+S2=1,S2+S3=2,S3+S4=3,S1+S2+S3+S4=4,故选A.【考点】勾股定理包含几何与数论两个方面,几何方面,一个直角三角形的斜边的平方等于另外两边的平方和.这里,边的平方的几何意义就是以该边为边的正方形的面积.7、D【解析】【分析】如图所示,过点C作CN⊥AB于N,延长AB、BA分别交正方形两边于H、E,证明△ADE≌△CAN得到,AE=CN同理可证△BGH≌△CBN,得到,BH=CN,则,即可推出由此即可得到答案.【详解】解:如图所示,过点C作CN⊥AB于N,延长AB、BA分别交正方形两边于H、E,∴∠CNA=∠DEA=∠DAC=90°,∴∠DAE+∠EDA=∠DAE+∠CAN=90°,∴∠ADE=∠CAN,又∵AD=CA,∴△ADE≌△CAN(AAS),∴,AE=CN同理可证△BGH≌△CBN,∴,BH=CN∴,∴,∴只需要知道△ABC的面积的面积即可求出阴影部分的面积,故选D【考点】本题主要考查了全等三角形的性质与判定,解题的关键在于能够正确作出辅助线,构造全等三角形.二、填空题1、3或6【解析】【分析】分两种情况分别求解,(1)当∠CED′=90°时,如图(1),根据轴对称的性质得∠AED=∠AED′=45′,得DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直线上,根据勾股定理得AC=10,设DE=D′E=x,则EC=CD−DE=8−x,根据勾股定理得,D′E2+D′C2=EC2,代入相关的值,计算即可.【详解】解:当∠CED′=90°时,如图(1),∵∠CED′=90°,根据轴对称的性质得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E为直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直线上,根据勾股定理得,∴CD′=10−6=4,设DE=D′E=x,则EC=CD−DE=8−x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8−x)2,解得x=3,即DE=3;综上所述:DE的长为3或6;故答案为:3或6.【考点】本题考查了矩形的性质、勾股定理、轴对称的性质,熟练掌握矩形的性质、勾股定理、轴对称的性质的综合应用,分情况讨论,作出图形是解题关键.2、【解析】【分析】设甲、乙二人出发后相遇的时间为x,然后利用勾股定理列出方程即可.【详解】解:设经x秒二人在C处相遇,这时乙共行AC=3x,甲共行AB+BC=7x,∵AB=10,∴BC=7x-10,又∵∠A=90°,∴BC2=AC2+AB2,∴(7x-10)2=(3x)2+102,故答案是:(7x-10)2=(3x)2+102.【考点】本题考查了勾股定理的应用,解题的关键是从实际问题中抽象出直角三角形.3、2+2【解析】【分析】地毯的竖直的线段加起来等于BC,水平的线段相加正好等于AC,即地毯的总长度至少为(AC+BC).【详解】在Rt△ABC中,∠A=30°,BC=2m,∠C=90°,∴AB=2BC=4m,∴AC=m,∴AC+BC=2+2(m).故答案为2+2.【考点】本题主要考查勾股定理的应用,解此题的关键在于准确理解题中地毯的长度为水平与竖直的线段的和.4、##【解析】【分析】根据勾股定理计算AC的长,利用面积差可得三角形ABC的面积,由三角形的面积公式即可得到结论.【详解】】解:由勾股定理得:AC=,∵S△ABC=3×4-×1×2-×3×2-×2×4=4,∴AC•BD=4,∴×2BD=4,∴BD=,故答案为:.【考点】本题考查了勾股定理,三角形的面积的计算,掌握勾股定理是解题的关键.5、2或14#14或2【解析】【分析】过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,得BD=AD=4,在Rt△BDC中,BC=4,得CD==5,①△ABC是钝角三角形时,②△ABC是锐角三角形时,分别求出AC的长,即可求解.【详解】解:过点作边的高,中,,,,在中,,,①是钝角三角形时,,;②是锐角三角形时,,,故答案为:2或14.【考点】本题考查了勾股定理,三角形面积求法,解题关键是分类讨论思想.6、7.5;【解析】【分析】旗杆、拉直的绳子与地面构成直角三角形,根据题中数据,用勾股定理即可解答.【详解】解:如图,设旗杆的长度为xm,则绳子的长度为:(x+1)m,在Rt△ABC中,由勾股定理得:x2+42=(x+1)2,解得:x=7.5,∴旗杆的高度为7.5m,故答案为7.5.【考点】本题考查的是勾股定理的应用,根据题意得出直角三角形是解答此题的关键.7、【解析】【分析】由题意知AD+DB=BC+CA,设BD=x,则AD=15-x,且在直角△ACD中,代入勾股定理公式中即可求x的值,树高CD=(5+x)米即可.【详解】解:由题意知AD+DB=BC+CA,且CA=10米,BC=5米,设BD=x,则AD=15-x,∵在Rt△ACD中,由勾股定理可得:CD2+CA2=AD2,即,解得x=2.5米,故树高为CD=5+x=7.5(米),答:树高为7.5米.故答案为:7.5.【考点】本题考查了勾股定理在实际生活中的应用,本题中找到AD+DB=BC+CA的等量关系,并根据勾股定理列方程求解是解题的关键.8、25.【解析】【详解】解:这种立体图形求最短路径问题,可以展开成为平面内的问题解决,展开后可转化下图,所以是直角三角形求斜边的问题.根据勾股定理可求出葛藤长为(尺).故答案为:25.三、解答题1、384【解析】【分析】连接,勾股定理求得,勾股定理的逆定理证明为直角三角形,进而根据三角形的面积公式计算和的面积之差即可.【详解】解:连接,在直角中,,,由,解得,在中,,,,∵,∴,∴为直角三角形,要求这块地的面积,求和的面积之差即可,,答:这块地的面积为.【考点】本题考查了勾股定理及其逆定理,掌握勾股定理和勾股定理的逆定理是解题的关键.2、(1)(2)3(3)7.5【解析】【分析】(1)梯形的面积等于三个直角三角形的面积的和.即可得:;(2)根据勾股定理可得三个图形中面积关系满足的有3个;(3)根据半圆面积和勾股定理即可得结论:,进而求解.(1)解:四边形ABED的面积可以表示为:,也可以表示为,所以,整理得;(2)设直角三角形的三条边按照从小到大分别为a,b,c,则,图③,∵,∴,图④,∵∴,图⑤,∵∴,故答案为:3.(3)∵,∴,∵,∴.【考点】本题考查了勾股定理的证明,解决本题的关键是掌握勾股定理.3、【解析】【分析】先由折叠可知EC=BC=2,进而可知AD=CE,通过全等三角形的角角边判定定理可证明△ADF≌△CEF,由全等可知FE=DF,设FC为x,则FE=DF=4-x,根据直角三角形的勾股定理可列方程,从而计算出CF的长度,通过CF与AD的长度可计算出重合部分面积.【详解】解:∵△AEC是由△ABC沿AC折叠后得到的,∴EC=BC=2,且∠E=∠B=90°,在△ADF与△CEF中,,∴△ADF≌△CEF(AAS),设FC=x,则FE=DF=4-x,在Rt△CEF中,由勾股定理可知:,∴,解得,∴,故折叠后重合部分的面积为.【考点】本题考查图形折叠的相关性质,以及直角三角形的勾股定理的应用,以及全等三角形的判定,找到合适的条件,选择适合的判定方法去证明全等三角形,利用勾股定理和方程思想列方程是解决本题的关键.4、(1)见解析(2)【解析】【分析】(1)根据题目所给条件证即可;(2)由可得,由勾股定理可求BD,即可求解;(1)证明:∵,∴,∵,∴.(2)解:∵,∴,在中,,∴.【考点】本题主要考查三角形的全等证明、勾股定理,掌握三角形的全等证明及性质是解题的关键.5、见解析.【解析】【分析】首先连结,作延长线于,则,根据,易证,再根据,,两者相等,整理即可得证.【详解】证明:连结,作延长线于,则即,∴∴即有:∴【考点】本题考查了勾股定理的证明,用两种方法表示出四边形ADFB的面积是解本题的关键.6、【初步运用】(1)5:9;(2)28;(3)24;(4);【迁移运用】a2+b2﹣ab=c2,证明
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民航安全问题题库及答案解析
- 2025年度台州市继续教育公需科目考试题(含答案)
- 河北护理解剖学题库及答案解析
- 2025年国家开放大学《营销企划与管理》期末考试备考试题及答案解析
- 安全生产月考试培训试题及答案解析
- 2025年国家开放大学《文化产业管理》期末考试备考试题及答案解析
- 机械维修安全知识题库及答案解析
- 校本课程开发与教师能力提升策略
- 高一物理期末考试试卷及解析
- 2025年国家开放大学(电大)《课程开发与教学设计》期末考试备考试题及答案解析
- 环境污染物对人体健康影响的研究
- 蒋婷婷-《书包里的故事》
- 国家开放大学理工英语1边学边练
- 人工智能导论PPT完整全套教学课件
- 卡氏肺孢子虫肺炎
- 陕中医大西医外科学教案05水、电解质代谢和酸碱平衡的失调
- 俱舍论原文内容
- GB/T 18742.3-2017冷热水用聚丙烯管道系统第3部分:管件
- 肺癌患者随访服务记录表
- 高三班主任经验交流课件
- 小学英语三年级上册全册课件
评论
0/150
提交评论