




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、若关于x的二次函数y=ax2+bx的图象经过定点(1,1),且当x<﹣1时y随x的增大而减小,则a的取值范围是()A. B. C. D.2、二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为(
)A.1个 B.2个 C.3个 D.4个3、下表中列出的是一个二次函数的自变量x与函数y的几组对应值:…-2013……6-4-6-4…下列各选项中,正确的是A.这个函数的图象开口向下B.这个函数的图象与x轴无交点C.这个函数的最小值小于-6D.当时,y的值随x值的增大而增大4、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(
)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20005、已知⊙O的半径为4,点O到直线m的距离为d,若直线m与⊙O公共点的个数为2个,则d可取()A.5 B.4.5 C.4 D.06、如图A、B、C在⊙O上,连接OA、OB、OC,若∠BOC=3∠AOB,劣弧AC的度数是120o,OC=.则图中阴影部分的面积是(
)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、如图,在中,,于点D,下列结论正确的是(
)A. B. C. D.2、如图是二次函数图象的一部分,过点,,对称轴为直线.则错误的有(
)A. B. C. D.3、如图,在△ABC中,∠C=90°,AB=5cm,cosB=.动点D从点A出发沿着射线AC的方向以每秒1cm的速度移动,动点E从点B出发沿着射线BA的方向以每秒2cm的速度移动.已知点D和点E同时出发,设它们运动的时间为t秒,连接BD.下列结论正确的有()A.BC=4cm;B.当AD=AB时,tan∠ABD=2;C.以点B为圆心、BE为半径画⊙B,当t=时,DE与⊙B相切;D.当∠CBD=∠ADE时,t=.4、已知:如图,AB为⊙O的直径,CD、CB为⊙O的切线,D、B为切点,OC交⊙O于点E,AE的延长线交BC于点F,连接AD、BD.以下结论中正确的有()A.AD∥OC B.点E为△CDB的内心 C.FC=FE D.CE•FB=AB•CF5、下列四个命题中正确的命题有(
)A.两个矩形一定相似 B.两个菱形都有一个角是40°,那么这两个菱形相似C.两个正方形一定相似 D.有一个角相等的两个等腰梯形相似6、下列用尺规等分圆周的说法中,正确的是(
)A.在圆上依次截取等于半径的弦,就可以六等分圆B.作相互垂直的两条直径,就可以四等分圆C.按A的方法将圆六等分,六个等分点中三个不相邻的点三等分圆D.按B的方法将圆四等分,再平分四条弧,就可以八等分圆周7、如图,在△ABC中,点D在边AC上,下列条件中,不能判断△BDC与△ABC相似的是(
)A.AB·CB=CA·CD B.AB·CD=BD·BCC.BC2=AC·DC D.BD2=CD·DA第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,在RT△ABC中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.2、如图是二次函数和一次函数y2=kx+t的图象,当y1≥y2时,x的取值范围是_____.3、若,则________.4、如图,在四边形ABCD中,点E、F分别是AB、CD的中点,过点E作AB的垂线,过点F作CD的垂线,两垂线交于点G,连接AG、BG、CG、DG,且∠AGD=∠BGC.若AD、BC所在直线互相垂直,的值为___.5、如图,四边形内接于⊙O若,则_______°.6、已知=,则=________.7、如图,在平面直角坐标系中,一次函数的图像分别交、轴于点、,将直线绕点按顺时针方向旋转,交轴于点,则直线的函数表达式是__________.四、解答题(6小题,每小题10分,共计60分)1、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.2、如图,在△ABC中,AB=AC,点P在BC上.(1)求作:△PCD,使点D在AC上,且△PCD∽△ABP;(要求:尺规作图,保留作图痕迹,不写作法)(2)在(1)的条件下,若∠APC=2∠ABC,求证:PD//AB.3、如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于点N,量得MN=38m,求AB的长.4、2022年冬奥会在北京召开,某网络经销商购进了一批以冬奥会为主题的文化衫进行销售,文化衫的进价为每件30元,当销售单价定为70元时,每天可售出20件,每销售一件需缴纳网络平台管理费2元,为了扩大销售,增加盈利,决定采取适当的降价措施,经调查发现:销售单价每降低1元,则每天可多售出2件(销售单价不低于进价),若设这款文化衫的销售单价为x(元),每天的销售量为y(件).(1)求每天的销售量y(件)与销售单价x(元)之间的函数关系式;(2)当销售单价为多少元时,销售这款文化衫每天所获得的利润最大,最大利润为多少元?5、如图,在直角梯形ABCD中,AD∥BC,∠ABC=90°,AB=12cm,AD=8cm,BC=22cm,AB为⊙O的直径,动点P从点A开始沿AD边向点D以1cm/s的速度运动,动点Q从点C开始沿CB边向点B以2cm/s的速度运动.P、Q分别从点A、C同时出发,当其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t(s).(1)当t为何值时,四边形PQCD为平行四边形?(2)当t为何值时,PQ与⊙O相切?6、已知:.(1)求代数式的值;(2)如果,求的值.-参考答案-一、单选题1、D【解析】【分析】根据题意开口向上,且对称轴−≥−1,a+b=1,即可得到−≥−1,从而求解.【详解】由二次函数y=ax2+bx可知抛物线过原点,∵抛物线定点(1,1),且当x<-1时,y随x的增大而减小,∴抛物线开口向上,且对称轴−≥−1,a+b=1,∴a>0,b=1﹣a,∴﹣≥﹣1,∴,故选:D.【考点】本题考查了二次函数图象与系数的关系,二次函数图象上点的坐标特征,根据题意得关于a的不等式组是解题的关键.2、C【解析】【分析】①由抛物线开口方向得到,对称轴在轴右侧,得到与异号,又抛物线与轴正半轴相交,得到,可得出,选项①错误;②把代入中得,所以②正确;③由时对应的函数值,可得出,得到,由,,,得到,选项③正确;④由对称轴为直线,即时,有最小值,可得结论,即可得到④正确.【详解】解:①∵抛物线开口向上,∴,∵抛物线的对称轴在轴右侧,∴,∵抛物线与轴交于负半轴,∴,∴,①错误;②当时,,∴,∵,∴,把代入中得,所以②正确;③当时,,∴,∴,∵,,,∴,即,所以③正确;④∵抛物线的对称轴为直线,∴时,函数的最小值为,∴,即,所以④正确.故选C.【考点】本题考查了二次函数图象与系数的关系:二次项系数决定抛物线的开口方向和大小.当时,抛物线向上开口;当时,抛物线向下开口;一次项系数和二次项系数共同决定对称轴的位置:当与同号时,对称轴在轴左;当与异号时,对称轴在轴右.常数项决定抛物线与轴交点:抛物线与轴交于.抛物线与轴交点个数由判别式确定:时,抛物线与轴有2个交点;时,抛物线与轴有1个交点;时,抛物线与轴没有交点.3、C【解析】【分析】利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断.【详解】解:设二次函数的解析式为,依题意得:,解得:,∴二次函数的解析式为=,∵,∴这个函数的图象开口向上,故A选项不符合题意;∵,∴这个函数的图象与x轴有两个不同的交点,故B选项不符合题意;∵,∴当时,这个函数有最小值,故C选项符合题意;∵这个函数的图象的顶点坐标为(,),∴当时,y的值随x值的增大而增大,故D选项不符合题意;故选:C.【考点】本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.4、D【解析】【分析】设二次函数的解析式为:y=ax2+bx+c,根据题意列方程组即可得到结论.【详解】解:设二次函数的解析式为:y=ax2+bx+c,∵当x=55,y=1800,当x=75,y=1800,当x=80时,y=1550,∴,解得a=−2,b=260,c=−6450,∴y与x的函数关系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故选:D.【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键.5、D【解析】【分析】根据直线和圆的位置关系判断方法,可得结论.【详解】∵直线m与⊙O公共点的个数为2个∴直线与圆相交∴d<半径=4故选D.【考点】本题考查了直线与圆的位置关系,掌握直线和圆的位置关系判断方法:设⊙O的半径为r,圆心O到直线l的距离为d.①直线l和⊙O相交⇔d<r②直线l和⊙O相切⇔d=r,③直线l和⊙O相离⇔d>r.6、C【解析】【分析】首先根据∠BOC=3∠AOB,劣弧AC的度数是120o得到∠AOB=30°,从而得到∠COB为直角,然后利用S阴影=S扇形OBC-S△OEC求解即可.【详解】解:设OB与AC相交于点E,如图∵劣弧AC的度数是120o∴∠AOC=120°∵OA=OC∴∠OCA=∠OAC=30°∵∠BOC=3∠AOB又∵∠AOC=∠AOB+∠BOC∴∠AOC=∠AOB+3∠AOB=120°∴∠AOB=30°∴∠BOC=3∠AOB=90°在Rt△OCE中,OC=2∴OE=OCtan∠OCE=2tan30°=2×=2∴S△OEC=×2×2=2S扇形OBC=∴用S阴影=S扇形OBC-S△OEC=-2故选C.【考点】本题考查了扇形面积的计算,解直角三角形等知识.在求不规则的阴影部分的面积时常常转化为几个规则几何图形的面积的和或差.二、多选题1、BC【解析】【分析】根据等角的余角相等,先把跟相等的角找出来,在不同直角三角形根据正弦值的定义即可解答.【详解】在中,,,于点D,,,在中,,故A错误;在中,,故B正确;在中,,故C正确,D错误.故选:BC.【考点】本题考查了锐角三角形的定义,掌握正弦值的表示是解题的关键.2、BD【解析】【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴x=−1可得2a+b的符号;再由根的判别式可得,根据二次函数的对称性进而对所得结论进行判断.【详解】解:A、由抛物线的开口向下知a<0,与y轴的交点在y轴的正半轴上,知c>0,∵对称轴为直线,得2a=b,∴a、b同号,即b<0,∴abc>0;故本选项正确,不符合题意;B、∵对称轴为,得2a=b,∴2a+b=4a,且a≠0,∴2a+b≠0;故本选项错误,符合题意;C、从图象知,该函数与x轴有两个不同的交点,所以根的判别式,即;故本选项正确,不符合题意;D、∵−3<x1<−2,∴根据二次函数图象的对称性,知当x=1时,y<0;又由A知,2a=b,∴a+b+c<0;∴b+b+c<0,即3b+2c<0;故本选项错误,符合题意.故选:BD.【考点】本题主要考查了二次函数图象与系数之间的关系,熟练运用对称轴的范围求2a与b的关系,二次函数与方程及不等式之间的关系是解决本题的关键.3、AB【解析】【分析】A.根据AB=5cm,cosB=即可求出BC的长度;B.由AD=AB,可得∠ABD=∠D,根据勾股定理求出AC的长度,然后在Rt△BCD中,即可求出tan∠ABD=tan∠D=2;C.根据DE与⊙B相切时,DE⊥BE,可得cos∠A=,代入即可求出运动的时间t的值,即可判断;D.根据题意可得满足条件的t的值应该有两个,进而可判断.【详解】A、在△ABC中,∵∠ACB=90°,AB=5cm,cosB=,∴,∴BC=AB•cos∠ABC=5×=4(cm),故A正确.B、在直角△ABC中,AC==3(cm),当AD=AB=5时,∠ABD=∠D,如图1,∴CD=AD﹣AC=5﹣3=2(cm),在Rt△BCD中,tan∠D==2,∴tan∠ABD=tan∠D=2,故B正确,C、如图,当DE与⊙B相切时,DE⊥BE.则有cos∠A=,∴,∴t=,当t=时,DE与⊙B相切;故C错误.D、满足条件的t的值应该有两个,显然D错误,故答案为:AB.【考点】此题考查了三角形动点问题,解直角三角形,圆切线的性质和判定,解题的关键是正确分析题目中的等量关系列出方程求解.4、ABD【解析】【分析】连接OD,由CD、CB为⊙O的切线,可得DC=BC,由OD=OB,可得OC为BD的垂直平分线,可证OC⊥BD,再证AD⊥BD,可判断选项A正确;连接DE、BE,CD、CB为⊙O的切线,可得∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,推得∠CDE=∠DOE,∠CBE=∠BOE,由,可得∠EDB=∠EBD=∠CDE=∠CBE,可判断选项B正确;用反证法假设FC=FE,可得∠FCE=∠FEC,可证△CDB为等边三角形,与已知△CDB为等腰三角形矛盾,可判断选项C不正确;先证△ABE∽△BFE,可得,再证△CEF∽△CBE,可得,推出,可判断选项D正确.【详解】解:连接OD,∵CD、CB为⊙O的切线,∴DC=BC,∵OD=OB,∴OC为BD的垂直平分线,∴OC⊥BD,∵AB为直径,∴∠ADB=90°,∴AD⊥BD,∴AD∥OC,故选项A正确;连接DE、BE,∵CD、CB为⊙O的切线,∴OD⊥DC,OB⊥BC,∴∠ODE+∠CDE=90°,∠OBE+∠CBE=90°,∵2∠ODE+∠DOE=180°,2∠OBE+∠BOE=180°,∴∠ODE+∠DOE=90°,∠OBE+∠BOE=90°,∴∠CDE=∠DOE,∠CBE=∠BOE,∵,∴∠DAE=∠DBE=∠EDB=∠EBD=∠DOE=∠BOE,∴∠EDB=∠EBD=∠CDE=∠CBE,∴点E为△CDB各内角平分线的交点,故选项B正确;假设FC=FE,∴∠FCE=∠FEC,∵∠CEF=∠AEO=∠EAB=∠EDB=∠EBD,∴2∠EDB=2∠EBD=2∠BCE即∠DCB=∠CDB=∠CBD,∴△CDB为等边三角形,与已知△CDB为等腰三角形矛盾,故假设不正确,故选项C不正确;∵AB为直径,∴∠AEB=90°又∵BC为切线,AB为直径,∴∠ABF=90°,∴∠FBE+∠EBA=90°,∠EAB+∠EBA=90°,∴∠EAB=∠EBF,∠AEB=∠BEF=90°,∴△ABE∽△BFE,∴,∵∠CBE=∠CEF,∠ECF=∠BCE,∴△CEF∽△CBE,∴,∴,∴CE•FB=AB•CF,故选项D正确;结论中正确的有ABD.故选择ABD.【考点】本题考查圆的切线性质,线段垂直平分线判定与性质,圆周角定理,证明三角形内心,反证法,三角形相似判定与性质,掌握圆的切线性质,线段垂直平分线判定与性质,圆周角定理,证明三角形内心,反证法,三角形相似判定与性质是解题关键.5、BC【解析】【分析】根据两个图形相似的性质及判定方法,对应边的比相等,对应角相等,两个条件同时满足来判断正误.【详解】解:A两个矩形对应角都是直角相等,对应边不一定成比例,所以不一定相似,故本小题错误;B两个菱形有一个角相等,则其它对应角也相等,对应边成比例,所以一定相似,故本小题正确;C两个正方形一定相似,正确;D有一个角相等的两个等腰梯形,对应角一定相等,但对应边的比不一定相等,故本小题错误.故选:BC.【考点】本题考查的是相似多边形的判定及菱形,矩形,正方形,等腰梯形的性质及其定义.6、ABCD【解析】【分析】由圆心角、弧、弦的关系定理得出ABCD正确,即可得出结论.【详解】解:根据圆心角、弧、弦的关系定理得:在圆上依次截取等于半径的弦,六条弧相等,就可以六等分圆,∴A正确;∵相互垂直的两条直径得出4个相等的圆心角是直角,∴4条弧相等,∴B正确;在圆上依次截取等于半径的弦,六条弧相等,六个等分点中三个不相邻的点三等分圆,∴C正确;∵相互垂直的两条直径得出4个相等的圆心角是直角,再平分四条弧,就可以八等分圆周,∴D正确;故选:ABCD.【考点】本题考查了正多边形和圆、圆心角、弧、弦的关系定理;熟练掌握圆心角、弧、弦的关系定理,由题意得出相等的弧是解题的关键.7、ABD【解析】【分析】根据三角形相似的判断方法逐个判断即可.【详解】解:A、AB·CB=CA·CD,不能判定△BDC∽△ABC,符合题意;B、AB·CD=BD·BC,不能判定△BDC∽△ABC,符合题意;C、BC2=AC·DC,∠BCD=∠ACB,∴△BDC∽△ABC,故选项不符合题意;D、BD2=CD·DA,不能判定△BDC与△ABC,符合题意;故选:ABD.【考点】此题考查了三角形相似的判定方法,解题的关键是熟练掌握三角形相似的判定方法.三、填空题1、3【解析】【分析】根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.【详解】解:∵∠ACB=90°,点D为AB中点,∴AB=2CD=10,∵BC=8,∴AC==6,∵DE⊥BC,AC⊥BC,∴DE∥AC,∴,即,∴DE=3,故答案为:3.【考点】本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.2、﹣1≤x≤2【解析】【分析】根据图象可以直接回答,使得y1≥y2的自变量x的取值范围就是直线y1=kx+m落在二次函数y2=ax2+bx+c的图象上方的部分对应的自变量x的取值范围.【详解】根据图象可得出:当y1≥y2时,x的取值范围是:﹣1≤x≤2.故答案为:﹣1≤x≤2.【考点】本题考查了二次函数的性质.本题采用了“数形结合”的数学思想,使问题变得更形象、直观,降低了题的难度.3、【解析】【分析】根据比例的基本性质进行化简,代入求职即可.【详解】由可得,,代入.故答案为.【考点】本题主要考查了比例的基本性质化简,准确观察分析是解题的关键.4、【解析】【分析】延长AD交GB于点M,交BC的延长线于点H,则AHBH,由线段垂直平分线的性质得出GA=GB,GD=GC,由SAS证明△AGD△BGC,得出∠GAD=∠GBC,再求出∠AGE=∠AHB=90°,得出∠AGE=∠AGB=45°,求出,先证出∠AGB=∠DGC,由,证出△AGB△DGC,得出比例式,再证出∠AGD=∠EGF,即可得出,即可得出的值.【详解】解:延长AD交GB于点M,交BC的延长线于点H,如图所示:则AHBH,GE是AB的垂直平分线,GA=GB,同理:GD=GC,在△AGD和△BGC中,,△AGD△BGC(SAS),∠GAD=∠GBC,在△GAM和△HBM中,∠GAD=∠GBC,∠GMA=∠HMB,∠AGB=∠AHB=90°,∠AGE=∠AGB=45°,∠AGD=∠BGC,∠AGB=∠DGC=90°,∴△AGB和△DGC是等腰直角三角形,,,又∠AGE=∠DGF,∠AGD=∠EGF,△AGD△EGF,.【考点】本题是相似三角形综合题目,考查了线段垂直平分线的性质、全等三角形的判定与性质、相似三角形的判定与性质、锐角三角函数等知识,本题难度较大,综合性强,解题的关键是通过作辅助线综合运用全等三角形和相似三角形的性质.5、104【解析】【分析】根据圆内接四边形的对角互补列式计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠A+∠C=180°,∴∠C=180°﹣∠A=180°﹣76°=104°,故答案为:104.【考点】本题考查的是圆内接四边形的性质,掌握圆内接四边形的对角互补是解题的关键.6、【解析】【分析】利用比例的性质进行变形,然后代入代数式中合并约分即可.【详解】解:∵,∴,则.故答案为:.【考点】本题考查比例问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.7、【解析】【分析】先根据一次函数求得、坐标,再过作的垂线,构造直角三角形,根据勾股定理和正余弦公式求得的长度,得到点坐标,从而得到直线的函数表达式.【详解】因为一次函数的图像分别交、轴于点、,则,,则.过作于点,因为,所以由勾股定理得,设,则,根据等面积可得:,即,解得.则,即,所以直线的函数表达式是.【考点】本题综合考察了一次函数的求解、勾股定理、正余弦公式,以及根据一次函数的解求一次函数的表达式,要学会通过作辅助线得到特殊三角形,以便求解.四、解答题1、9【解析】【分析】过点A作AF⊥BC交BC于F,则由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,则在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,从而求出BC.【详解】解:过点A作AF⊥BC交BC于F,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BF,在Rt△BAE中,AE=3cm,∴AB=cm,在Rt△AFB中,BF=AB•cos30°=,∴BC=2BF=2×=9.【考点】本题考查了等腰三角形的性质和解直角三角形,通过作辅助线构造直角三角形是解题关键2、(1)见解析;(2)见解析【解析】【分析】(1)根据相似三角形的性质可得∠CPD=∠BAP,故作∠CPD=∠BAP,∠CPD与AC的交点为D即可;(2)利用外角的性质以及(1)中∠CPD=∠BAP可得∠CPD=∠ABC,再根据平行线的判定即可.【详解】解:(1)∵△PCD∽△ABP,∴∠CPD=∠BAP,故作∠CPD=∠BAP即可,如图,即为所作图形,(2)∵∠APC=∠APD+∠DPC=∠ABC+∠BAP=2∠ABC,∴∠BAP=∠ABC,∴∠BAP=∠CPD=∠ABC,即∠CPD=∠ABC,∴PD∥AB.【考点】本题考查了尺规作图,相似三角形的性质,外角的性质,难度不大,解题的关键是掌握尺规作图的基本作法.3、.【解析】【分析】先根据可判断出,再根据相似三角形的对应边成比例列出方程解答即可.【详解】解:,,,,,即,.的长为.【考点】本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.4、(1);(2)当销售单价为56元时,每天所获得的利润最大,最大利润为1152元【解析】【分析】(1)根据“销售单价每降低1元,则每天可多售出2件”列函数关系式;(2)根据总利润=单件利润×销售量列出函数关系式,然后利用二次函数的性质分析其最值.【详解】解:(1)由题意可得:,整理,得:,每天的销售量y(件)与销售单价x(元)之间的函数关系式为;(2)设销售所得利润为w,由题意可得:,整理,得:,,当时,w取最大值为1152,当销售单价为56
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 隔离房源保障措施方案(3篇)
- 焦化企业重组方案(3篇)
- 支架维修施工方案(3篇)
- 花盆装饰改造方案(3篇)
- 元旦节促销方案(3篇)
- 建筑企业避税措施方案(3篇)
- 防水止漏服务方案(3篇)
- 化工协会安全检查方案(3篇)
- 山区道路挖方案(3篇)
- 电厂事故处置方案模板(3篇)
- engel恩格尔注塑机机操纵使用说明
- 花卉学 二年生花卉
- 附件1:中国联通动环监控系统B接口技术规范(V3.0)
- 箱变设备台账
- GB/T 1185-2006光学零件表面疵病
- 微课(比喻句)讲课教案课件
- 银行间本币市场业务简介
- 2023年厦门东海职业技术学院辅导员招聘考试笔试题库及答案解析
- 辽阳市出租汽车驾驶员从业资格区域科目考试题库(含答案)
- (完整版)剑桥通用五级PET考试练习题
- DB32- 4385-2022《锅炉大气污染物排放标准》
评论
0/150
提交评论