




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市巴南中学7年级数学下册第四章三角形专题训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列长度的三条线段能组成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,72、以长为15cm,12cm,8cm、5cm的四条线段中的三条线段为边,可以画出三角形的个数是()A.1个 B.2个 C.3个 D.4个3、一个三角形的两边长分别为5和2,若该三角形的第三边的长为偶数,则该三角形的第三边的长为()A.6 B.8 C.6或8 D.4或64、如图,AB=AC,点D、E分别在AB、AC上,补充一个条件后,仍不能判定△ABE≌△ACD的是()A.∠B=∠C B.AD=AE C.BE=CD D.∠AEB=∠ADC5、有两根长度分别为7cm,11cm的木棒,下面为第三根的长度,则可围成一个三角形框架的是()A.3cm B.4cm C.9cm D.19cm6、下列长度的三条线段能组成三角形的是()A.348 B.4410 C.5610 D.56117、如图,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形.他的依据是()A. B. C. D.8、根据下列已知条件,能画出唯一的的是()A., B.,,C.,, D.,,9、如图,为估计池塘岸边A、B两点的距离,小方在池塘的一侧选取一点O,OA=15米,OB=10米,A、B间的距离不可能是()A.5米 B.10米 C.15米 D.20米10、已知三角形的两边长分别为2cm和3cm,则第三边长可能是()A.6cm B.5cm C.3cm D.1cm第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,,,,则、两点之间的距离为______.2、如图所示,锐角△ABC中,D,E分别是AB,AC边上的点,连结BE、CD交于点F.将△ADC和△AEB分别绕着边AB、AC翻折得到△ADC'和△AEB',且EB'∥DC'∥BC,若∠BAC=42°,则∠BFC的大小是___.3、一个零件的形状如图,按规定∠A=90°,∠B=∠D=25°,判断这个零件是否合格,只要检验∠BCD的度数就可以了.量得∠BCD=150°,这个零件______(填“合格”不合格”).4、在新年联欢会上,老师设计了“你说我画”的游戏.游戏规则如下:甲同学需要根据乙同学提供的三个条件画出形状和大小都确定的三角形.已知乙同学说出的前两个条件是“,”.现仅存下列三个条件:①;②;③.为了甲同学画出形状和大小都确定的,乙同学可以选择的条件有:______.(填写序号,写出所有正确答案)5、如图,正三角形△ABC和△CDE,A,C,E在同一直线上,AD与BE交于点O,AD与BC交于点P,BE与CD交于点Q,连接PQ.①AD=BE;②PQ∥AE;③AP=BQ;④DE=DP;⑤∠AOB=60°.成立的结论有_____.(填序号)6、如图,在长方形ABCD中,,.延长BC到点E,使,连结DE,动点P从点B出发,以每秒2个单位长度的速度沿向终点A运动.设点P的运动时间为t秒,当t的值为______________时,和全等.7、如图,已知AB=3,AC=CD=1,∠D=∠BAC=90°,则△ACE的面积是_____.8、如图,在△ABC中,AD是BC边上的中线,BE是△ABD中AD边上的中线,若△ABC的面积是80,则△ABE的面积是________.9、如图,△ABC≌△DEF,BE=a,BF=b,则CF=___.10、如图,在△ABC中,∠ACB=90°,AC=8,BC=10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F,当△PEC与△QFC全等时,CQ的长为______.三、解答题(6小题,每小题10分,共计60分)1、如图,在每个小正方形的边长均相等的网格中,△ABC的顶点均在格点(网格线的交点)上.(1)线段CD将△ABC分成面积相等的两个三角形,且点D在边AB上,画出线段CD.(2)△CBE≌△CBD,且点E在格点上,画出△CBE.2、下面是“作一个角的平分线”的尺规作图过程.已知:如图,钝角.求作:射线OC,使.作法:如图,①在射线OA上任取一点D;②以点О为圆心,OD长为半径作弧,交OB于点E;③分别以点D,E为圆心,大于长为半径作弧,在内,两弧相交于点C;④作射线OC.则OC为所求作的射线.完成下面的证明.证明:连接CD,CE由作图步骤②可知______.由作图步骤③可知______.∵,∴.∴(________)(填推理的依据).3、已知,如图,三角形ABC是等腰直角三角形,∠ACB=90°,F是AB的中点,直线l经过点C,分别过点A、B作l的垂线,即AD⊥CE,BE⊥CE,(1)如图1,当CE位于点F的右侧时,求证:△ADC≌△CEB;(2)如图2,当CE位于点F的左侧时,求证:ED=BE﹣AD;(3)如图3,当CE在△ABC的外部时,试猜想ED、AD、BE之间的数量关系,并证明你的猜想.4、在边长为10厘米的等边三角形△ABC中,如果点M,N都以3厘米/秒的速度匀速同时出发.(1)若点M在线段AC上由A向C运动,点N在线段BC上由C向B运动.①如图①,当BD=6,且点M,N在线段上移动了2s,此时△AMD和△BND是否全等,请说明理由.②求两点从开始运动经过几秒后,△CMN是直角三角形.(2)若点M在线段AC上由A向点C方向运动,点N在线段CB上由C向点B方向运动,运动的过程中,连接直线AN,BM,交点为E,探究所成夹角∠BEN的变化情况,结合计算加以说明.5、如图1,AM为△ABC的BC边的中线,点P为AM上一点,连接PB.(1)若P为线段AM的中点.①设△ABP的面积为S1,△ABC的面积为S,求的值;②已知AB=5,AC=3,设AP=x,求x的取值范围.(2)如图2,若AC=BP,求证:∠BPM=∠CAM.6、在中,,是射线上一点,点在的右侧,线段,且,连结.(1)如图1,点在线段上,求证:.(2)如图2,点在线段延长线上,判断与的数量关系并说明理由.-参考答案-一、单选题1、C【分析】根据组成三角形的三边关系依次判断即可.【详解】A、3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.2、C【分析】从4条线段里任取3条线段组合,可有4种情况,看哪种情况不符合三角形三边关系,舍去即可.【详解】解:首先可以组合为15cm,12cm,8cm;15cm,12cm,5cm;15cm,8cm、5cm;12cm,8cm、5cm.再根据三角形的三边关系,发现其中的12cm,8cm、5cm不符合,则可以画出的三角形有3个.故选:C.【点睛】本题考查了三角形的三边关系:即任意两边之和大于第三边,任意两边之差小于第三边.这里一定要首先把所有的情况组合后,再看是否符合三角形的三边关系.3、D【分析】根据三角形两边之和大于第三边确定第三边的范围,根据题意计算即可.【详解】解:设三角形的第三边长为x,则5﹣2<x<5+2,即3<x<7,∵三角形的第三边是偶数,∴x=4或6,故选:D.【点睛】本题考查了三角形三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.4、C【分析】根据全等三角形的判定定理进行判断即可.【详解】解:根据题意可知:AB=AC,,若,则根据可以证明△ABE≌△ACD,故A不符合题意;若AD=AE,则根据可以证明△ABE≌△ACD,故B不符合题意;若BE=CD,则根据不可以证明△ABE≌△ACD,故C符合题意;若∠AEB=∠ADC,则根据可以证明△ABE≌△ACD,故D不符合题意;故选:C.【点睛】本题考查了全等三角形的判定,熟练掌握全等三角形的判定定理是解本题的关键.5、C【分析】已知两边,则第三边的长度应是大于两边的差且小于两边的和,这样就可求出第三边长的范围.【详解】解:依题意得:11﹣7<x<7+11,即4<x<18,9cm适合.故选:C.【点睛】本题考查三角形三边关系,是重要考点,掌握相关知识是解题关键.6、C【分析】根据三角形的任意两边之和大于第三边对各选项分析判断求解即可.【详解】解:A.∵3+4<8,∴不能组成三角形,故本选项不符合题意;B.∵4+4<10,∴不能组成三角形,故本选项不符合题意;C.∵5+6>10,∴能组成三角形,故本选项符合题意;D.∵5+6=11,∴不能组成三角形,故本选项不符合题意;故选:C.【点睛】本题考查了三角形的三边关系,熟记三角形的任意两边之和大于第三边是解决问题的关键.7、C【分析】根据题意,可知仍可辨认的有1条边和2个角,且边为两角的夹边,即可根据来画一个完全一样的三角形【详解】根据题意可得,已知一边和两个角仍保留,且边为两角的夹边,根据两个三角形对应的两角及其夹边相等,两个三角形全等,即故选C【点睛】本题考查了三角形全等的性质与判定,掌握三角形的判定方法是解题的关键.8、C【分析】利用全等三角形的判定方法以及三角形三边关系分别判断得出即可.【详解】解:A.∠C=90°,AB=6,不符合全等三角形的判定方法,即不能画出唯一三角形,故本选项不符合题意;B.,,,不符合全等三角形的判定定理,不能画出唯一的三角形,故本选项不符合题意;C.,,,符合全等三角形的判定定理ASA,能画出唯一的三角形,故本选项符合题意;D.3+4<8,不符合三角形的三边关系定理,不能画出三角形,故本选项不符合题意;故选:C.【点睛】此题主要考查了全等三角形的判定以及三角形三边关系,正确把握全等三角形的判定方法是解题关键.9、A【分析】根据三角形的三边关系得出5<AB<25,根据AB的范围判断即可.【详解】解:连接AB,根据三角形的三边关系定理得:15﹣10<AB<15+10,即:5<AB<25,∴A、B间的距离在5和25之间,∴A、B间的距离不可能是5米;故选:A.【点睛】本题主要考查对三角形的三边关系定理的理解和掌握,能正确运用三角形的三边关系定理是解此题的关键.10、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边.即可求解.【详解】解:设第三边长为xcm,根据三角形的三边关系可得:3-2<x<3+2,解得:1<x<5,只有C选项在范围内.故选:C.【点睛】本题考查了三角形的三边关系,关键是掌握第三边的范围是:大于已知的两边的差,而小于两边的和.二、填空题1、55【分析】根据题意首先证明△AOB和△DOC全等,再根据全等三角形对应边相等即可得出答案.【详解】解:,,,即,在和中,,≌,.故答案为:.【点睛】本题主要考查全等三角形的应用以及两点之间的距离,解题的关键是掌握全等三角形对应边相等.2、96°96度【分析】根据题意由翻折的性质和全等三角形的对应角相等、三角形外角定理以及三角形内角和定理进行分析解答.【详解】解:设∠C′=α,∠B′=β,∵将△ADC和△AEB分别绕着边AB、AC翻折得到△ADC'和△AEB',∴△ADC≌△ADC′,△AEB≌△AEB′,∴∠ACD=∠C′=α,∠ABE=∠B′=β,∠BAE=∠B′AE=42°,∴∠C′DB=∠BAC′+AC′D=42°+α,∠CEB′=42°+β.∵C′D∥EB′∥BC,∴∠ABC=∠C′DB=42°+α,∠ACB=∠CEB′=42°+β,∴∠BAC+∠ABC+∠ACB=180°,即126°+α+β=180°.则α+β=54°.∵∠BFC=∠BDC+∠DBE,∴∠BFC=42°+α+β=42°+54°=96°.故答案为:96°.【点睛】本题考查全等三角形的性质,解答本题的关键是利用“全等三角形的对应角相等”和“两直线平行,内错角相等”进行推理.3、不合格【分析】连接AC并延长,然后根据三角形的一个外角等于与它不相邻的两个内角的和可得∠3=∠1+∠B,∠4=∠2+∠D,再求出∠BCD即可进行判定.【详解】解:如图,连接AC并延长,由三角形的外角性质可得,∠3=∠1+∠B,∠4=∠2+∠D,∴∠BCD=∠3+∠4=∠1+∠B+∠2+∠D=∠BAD+∠B+∠D=90°+25°+25°=140°,∵140°≠150°,∴这个零件不合格.故答案为:不合格.【点睛】本题考查了三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并作辅助线构造出两个三角形是解题的关键.4、②【分析】根据两边及其夹角对应相等的两个三角形全等,即可求解.【详解】解:①若选,是边边角,不能得到形状和大小都确定的;②若选,是边角边,能得到形状和大小都确定的;③若选,是边边角,不能得到形状和大小都确定的;所以乙同学可以选择的条件有②.故答案为:②【点睛】本题主要考查了全等三角形的判定,熟练掌握两边及其夹角对应相等的两个三角形全等是解题的关键.5、①②③⑤【分析】①由于△ABC和△CDE是等边三角形,可知AC=BC,CD=CE,∠ACB=∠DCE=60°,从而证出△ACD≌△BCE,可推知AD=BE;③由△ACD≌△BCE得∠CBE=∠DAC,加之∠ACB=∠DCE=60°,AC=BC,得到△ACP≌△BCQ(ASA),所以AP=BQ;故③正确;②根据③△CQB≌△CPA(ASA),再根据∠PCQ=60°推出△PCQ为等边三角形,又由∠PQC=∠DCE,根据内错角相等,两直线平行,可知②正确;④根据∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,可知∠DQE≠∠CDE,可知④错误;⑤利用等边三角形的性质,BC∥DE,再根据平行线的性质得到∠CBE=∠DEO,于是∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°,可知⑤正确.【详解】解:①∵等边△ABC和等边△DCE,∴BC=AC,DE=DC=CE,∠DEC=∠BCA=∠DCE=60°,∴∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS),∴AD=BE;故①正确;③∵△ACD≌△BCE(已证),∴∠CAD=∠CBE,∵∠ACB=∠ECD=60°(已证),∴∠BCQ=180°﹣60°×2=60°,∴∠ACB=∠BCQ=60°,在△ACP与△BCQ中,,∴△ACP≌△BCQ(ASA),∴AP=BQ;故③正确;②∵△ACP≌△BCQ,∴PC=QC,∴△PCQ是等边三角形,∴∠CPQ=60°,∴∠ACB=∠CPQ,∴PQ∥AE;故②正确;④∵AD=BE,AP=BQ,∴AD﹣AP=BE﹣BQ,即DP=QE,∠DQE=∠ECQ+∠CEQ=60°+∠CEQ,∠CDE=60°,∴∠DQE≠∠CDE,∴DE≠QE,∴DP≠DE;故④错误;⑤∵∠ACB=∠DCE=60°,∴∠BCD=60°,∵等边△DCE,∠EDC=60°=∠BCD,∴BC∥DE,∴∠CBE=∠DEO,∴∠AOB=∠DAC+∠BEC=∠BEC+∠DEO=∠DEC=60°.故⑤正确;综上所述,正确的结论有:①②③⑤.故答案为:①②③⑤.【点睛】本题综合考查等边三角形判定与性质、全等三角形的判定与性质、平行线的判定与性质等知识点的运用.要求学生具备运用这些定理进行推理的能力.6、1或7【分析】分两种情况进行讨论,根据题意得出BP=2t=2或AP=16-2t=2即可求得结果.【详解】解:当点P在BC上时,∵AB=CD,∴当△ABP≌△DCE,得到BP=CE,由题意得:BP=2t=2,∴t=1,当P在AD上时,∵AB=CD,∴当△BAP≌△DCE,得到AP=CE,由题意得:AP=6+6-4﹣2t=2,解得t=7.∴当t的值为1或7秒时.△ABP和△DCE全等.故答案为:1或7.【点睛】本题考查了全等三角形的判定,解题的关键在于能够利用分类讨论的思想进行求解.7、##【分析】先根据三角形全等的判定定理证出,再根据全等三角形的性质可得,然后利用三角形的面积公式即可得.【详解】解:在和中,,,,则的面积是,故答案为:.【点睛】本题考查了三角形全等的判定定理与性质,熟练掌握三角形全等的判定方法是解题关键.8、20【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可解答.【详解】解:∵AD是BC上的中线,∴S△ABD=S△ACD=S△ABC,∵BE是△ABD中AD边上的中线,∴S△ABE=S△BED=S△ABD,∴S△ABE=S△ABC,∵△ABC的面积是80,∴S△ABE=×80=20.故答案为:20.【点睛】本题主要考查了三角形面积的求法,掌握三角形的中线将三角形分成面积相等的两部分,是解答本题的关键.9、##【分析】先利用线段和差求EF=BE﹣BF=a-b,根据全等三角形的性质BC=EF,再结合线段和差求出FC可得答案.【详解】解:∵BE=,BF=,∴EF=BE﹣BF=,∵△ABC≌△DEF,∴BC=EF=,∴CF=BC﹣BF=,故答案为:.【点睛】本题考查全等三角形的性质,线段和差,解题的关键是根据全等三角形的性质得出BC=EF.10、7或3.5【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;【详解】解:当P在AC上,Q在BC上时,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC与△QFC全等,∴此时是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,综上,当△PEC与△QFC全等时,满足条件的CQ的长为7或3.5,故答案为:7或3.5.【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键.三、解答题1、(1)见解析;(2)见解析【分析】(1)根据三角形一边上的中线将三角形面积平分,所以找到AB的中点D,连接CD即可;(2)根据全等三角形的性质得到BE=BD,CE=CD,进而找到E点即可解答.【详解】解:(1)∵线段CD将△ABC分成面积相等的两个三角形,且点D在边AB上,∴点D为AB的中点,连接CD,如图所示:(2)∵△CBE≌△CBD,∴BE=BD,CE=CD,∠CBD=∠CBE,∵点E在格点上,∴如图,△CBE即为所求作的三角形.【点睛】本题考查基本作图、三角形中线性质、全等三角形的性质,掌握三角形中线性质是解答的关键.2、OE;CE;全等三角形的对应角相等【分析】根据圆的半径相等可得OD=OE,CD=CE,再利用SSS可证明,从而根据全等三角形的性质可得结论.【详解】证明:连接CD,CE由作图步骤②可知___OE___.由作图步骤③可知__CE___.∵,∴.∴(__全等三角形对应角相等__)故答案为:OE;CE;全等三角形的对应角相等【点睛】本题考查了作图-基本作图:熟练掌握基本作图(作一条线段等于已知线段;作一个角等于已知角;作已知线段的垂直平分线;作已知角的角平分线;过一点作已知直线的垂线).也考查了全等三角形的判定和性质.3、(1)见解析;(2)见解析;(3)ED=AD+BE.证明见解析【分析】(1)利用同角的余角相等得出∠CAD=∠BCE,进而根据AAS证明△ADC≌△CEB;(2)根据AAS证明△ADC≌△CEB后,得其对应边相等,进而得到ED=BE-AD;(3)根据AAS证明△ADC≌△CEB后,得DC=BE,AD=CE,又有ED=CE+DC,进而得到ED=AD+BE.【详解】(1)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中,∴△ADC≌△CEB(AAS);(2)证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CD-CE,∴ED=BE-AD;(3)ED=AD+BE.证明:∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°.∵∠ACD+∠ECB=90°,∠CAD+∠ACD=90°,∴∠CAD=∠BCE(同角的余角相等).在△ADC与△CEB中,∴△ADC≌△CEB(AAS).∴DC=BE,AD=CE.又∵ED=CE+DC,∴ED=AD+BE.【点睛】本题考查了全等三角形的判定和性质;利用全等三角形的对应边相等进行等量交换,证明线段之间的数量关系,这是一种很重要的方法,注意掌握.4、(1)①证明见解析;②经过或秒后,△CMN是直角三角形;(2)∠BEN=60°,证明见解析【分析】(1)①根据题意得出AM=BD,AD=BN,根据等边三角形的性质得到∠A=∠B=∠C=60°,利用SAS定理证明△AMD≌△BDN;②分∠CNM=90°、∠CMN=90°两种情况,根据直角三角形的性质列式计算即可;(2)证明△ABM≌△CAN,根据全等三角形的性质得到∠ABM=∠CAN,根据三角形的外角性质计算,得到答案.【详解】(1)①∵△ABC为等边三角形,∴∠A=∠B=∠C=60°,当点M,N在线段上移动了2s时,AM=6厘米,CN=6厘米,∴BN=BC﹣CN=4厘米,∵AB=10厘米,BD=6厘米,∴AD=4厘米,∴AM=BD,AD=BN,在△AMD和△BDN中,,∴△AMD≌△BDN(SAS);②设经过t秒后,△CMN是直角三角形,由题意得:CM=(10﹣3t)厘米,CN=3t厘米,当∠CNM=90°时,∵∠C=60°,∴∠CMN=30°,∴CM=
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年辽宁经济职业技术学院电视播音主持期末考试题库检测试题打印及答案详解【有一套】
- 2025年中考数学总复习《分式》考前冲刺试卷(名校卷)附答案详解
- 2024专升本模拟试题含完整答案详解(网校专用)
- 2024职称计算机通关题库附答案详解(夺分金卷)
- 医师定期考核经典例题附答案详解【培优A卷】
- 2024事业单位工勤技能考试考试综合练习AB卷附答案详解
- 2024年青海建筑职业技术学院电视播音主持期末考试高分题库附答案详解【模拟题】
- 2024-2025学年度电梯考试预测复习及参考答案详解(夺分金卷)
- 2024-2025学年度银行岗位考前冲刺试卷附完整答案详解【必刷】
- 2024医师定期考核试题附答案详解(基础题)
- 人力资源知识竞赛题库及答案
- 地铁轨道安全培训报道课件
- 传染病及其预防(第一课时)课件-2025-2026学年人教版生物八年级上册
- (2025秋新版)二年级上册道德与法治全册教案
- 老挝药品注册管理办法
- 2025年社工工作者考试真题及答案
- 《肥胖症诊疗指南(2024年版)》解读课件
- 2025安化事业单位笔试真题
- 竣工结算审计服务投标方案(技术方案)
- MOOC 跨文化交际通识通论-扬州大学 中国大学慕课答案
- 浙江省医疗机构制剂许可证换发证检查标准
评论
0/150
提交评论