2025山东省临清市中考数学考试历年机考真题集必考题附答案详解_第1页
2025山东省临清市中考数学考试历年机考真题集必考题附答案详解_第2页
2025山东省临清市中考数学考试历年机考真题集必考题附答案详解_第3页
2025山东省临清市中考数学考试历年机考真题集必考题附答案详解_第4页
2025山东省临清市中考数学考试历年机考真题集必考题附答案详解_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省临清市中考数学考试历年机考真题集考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题25分)一、单选题(5小题,每小题2分,共计10分)1、三孔桥横截面的三个孔都呈抛物线形,两小孔形状、大小完全相同.当水面刚好淹没小孔时,大孔水面宽度为10米,孔顶离水面1.5米;当水位下降,大孔水面宽度为14米时,单个小孔的水面宽度为4米,若大孔水面宽度为20米,则单个小孔的水面宽度为()A.4米 B.5米 C.2米 D.7米2、如图,在等腰Rt△ABC中,AC=BC=,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是(

)A.π B.π C.π D.23、一元二次方程,用配方法解该方程,配方后的方程为()A. B.C. D.4、一元二次方程配方后可化为(

)A. B.C. D.5、如果,那么的结果是(

)A. B. C. D.二、多选题(5小题,每小题3分,共计15分)1、下列命题中,不正确的是(

)A.三点可确定一个圆B.三角形的外心是三角形三边中线的交点C.一个三角形有且只有一个外接圆D.三角形的外心必在三角形的内部或外部2、一个两位数,十位数字与个位数字之和是5,把这个数的个位数字与十位数字对调后,所得的新的两位数与原来的两位数的乘积是736,原来的两位数是(

)A.23 B.32 C. D.3、如图,是半圆的直径,半径于点,为半圆上一点,,与交于点,连接,,给出以下四个结论,其中正确的是(

)A.平分 B. C. D.4、如图,AB是的直径,C是上一点,E是△ABC的内心,,延长BE交于点F,连接CF,AF.则下列结论正确的是(

)A. B.C.△AEF是等腰直角三角形 D.若,则5、如图在四边形中,,,,为的中点,以点为圆心、长为半径作圆,恰好使得点在圆上,连接,若,则下列说法中正确的是(

)A.是劣弧的中点 B.是圆的切线C. D.第Ⅱ卷(非选择题75分)三、填空题(5小题,每小题3分,共计15分)1、如图,△ABC内接于☉O,∠CAB=30°,∠CBA=45°,CD⊥AB于点D,若☉O的半径为2,则CD的长为_____2、一元二次方程的解为__________.3、抛物线的开口方向向______.4、“降次”是解一元二次方程的基本思想,用这种思想解高次方程x3-x=0,它的解是_____________.5、写出一个满足“当时,随增大而减小”的二次函数解析式______.四、解答题(6小题,每小题10分,共计60分)1、解下列方程:(1);(2).2、解关于y的方程:by2﹣1=y2+2.3、某服装店在销售中发现:进货价为每件50元,销售价为每件90元的某品牌服装平均每天可售出20件.现服装店决定采取适当的降价措施,扩大销售量,增加盈利.经市场调查发现:如果每件服装降价1元,那么平均每天就可多售出2件.(1)求销售价在每件90元的基础上,每件降价多少元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠?(2)要想平均每天盈利2000元,可能吗?请说明理由.4、如图,矩形ABCD中,AB=6cm,BC=12cm..点M从点A开始沿AB边向点B以1cm/秒的速度向B点移动,点N从点B开始沿BC边以2cm/秒的速度向点C移动.若M,N分别从A,B点同时出发,设移动时间为t(0<t<6),△DMN的面积为S.(1)求S关于t的函数关系式,并求出S的最小值;(2)当△DMN为直角三角形时,求△DMN的面积.5、某水果店标价为10元/kg的某种水果经过两次降价后价格为8.1元/kg,并且两次降价的百分率相同.时间/天x销量/kg120-x储藏和损耗费用/元3x2-64x+400(1)求该水果每次降价的百分率;(2)从第二次降价的第1天算起,第x天(x为整数)的销量及储藏和损耗费用的相关信息如下表所示,已知该水果的进价为4.1元/kg,设销售该水果第x天(1≤x<10)的利润为377元,求x的值.6、如图,已知正方形点在边上,以为边在左侧作正方形;以为邻边作平行四边形连接.(1)判断和的数量及位置关系,并说明理由;(2)将绕点顺时针旋转,在旋转过程中,和的数量及位置关系是否发生变化?请说明理由.-参考答案-一、单选题1、B【解析】【分析】根据题意,可以画出相应的抛物线,然后即可得到大孔所在抛物线解析式,再求出顶点为A的小孔所在抛物线的解析式,将x=﹣10代入可求解.【详解】解:如图,建立如图所示的平面直角坐标系,由题意可得MN=4,EF=14,BC=10,DO=,设大孔所在抛物线解析式为y=ax2+,∵BC=10,∴点B(﹣5,0),∴0=a×(﹣5)2+,∴a=-,∴大孔所在抛物线解析式为y=-x2+,设点A(b,0),则设顶点为A的小孔所在抛物线的解析式为y=m(x﹣b)2,∵EF=14,∴点E的横坐标为-7,∴点E坐标为(-7,-),

∴-=m(x﹣b)2,∴x1=+b,x2=-+b,∴MN=4,∴|+b-(-+b)|=4∴m=-,∴顶点为A的小孔所在抛物线的解析式为y=-(x﹣b)2,∵大孔水面宽度为20米,∴当x=-10时,y=-,∴-=-(x﹣b)2,∴x1=+b,x2=-+b,∴单个小孔的水面宽度=|(+b)-(-+b)|=5(米),故选:B.【考点】本题考查二次函数的应用,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.2、B【解析】【分析】取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,利用勾股定理得到AB的长,进而可求出OC,OP的长,求得∠CMO=90°,于是得到点M在以OC为直径的圆上,然后根据圆的周长公式计算点M运动的路径长.【详解】解:取AB的中点O、AC的中点E、BC的中点F,连接OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=OP=AB=2,∵∠ACB=90°,∴C在⊙O上,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,P点在A点时,M点在E点;P点在B点时,M点在F点.∵O是AB中点,E是AC中点,∴OE是△ABC的中位线,∴OE//BC,OE=BC=,∴OE⊥AC,同理OF⊥BC,OF=,∴四边形CEOF是矩形,∵OE=OF,∴四边形CEOF为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=×π×2=π.故选:B.【考点】本题考查了等腰三角形的性质,勾股定理,正方形的判定与性质,圆周角定理,以及动点的轨迹:点按一定规律运动所形成的图形为点运动的轨迹.解决此题的关键是利用圆周角定理确定M点的轨迹为以EF为直径的半圆.3、D【解析】【分析】按照配方法的步骤,移项,配方,配一次项系数一半的平方.【详解】∵x2−2x−m=0,∴x2−2x=m,∴x2−2x+1=m+1,∴(x−1)2=m+1.故选D.【考点】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确使用.4、B【解析】【分析】根据题意直接对一元二次方程配方,然后把常数项移到等号右边即可.【详解】解:根据题意,把一元二次方程配方得:,即,∴化成的形式为.故选:B.【考点】本题考查配方法解一元二次方程,注意掌握配方法的一般步骤:把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.5、B【解析】【分析】根据比例的性质即可得到结论.【详解】∵=,∴可设a=2k,b=3k,∴==-.故选B.【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案.二、多选题1、ABD【解析】【分析】根据圆的性质定理逐项排查即可.【详解】解:A.不在同一条直线上的三点确定一个圆,故本选项错误;B.三角形的外心是三角形三边垂直平分线的交点,所以本选项是错误;C.三角形的外接圆是三条垂直平分线的交点,有且只有一个交点,所以任意三角形一定有一个外接圆,并且只有一个外接圆,所以本选项是正确的;D.直角三角形的外心在斜边中点处,故本选项错误.故选:ABD.【考点】考查确定圆的条件以及三角形外接圆的知识,掌握三角形的外接圆是三条垂直平分线的交点是解题的关键.2、AB【解析】【分析】设原来的两位数十位上的数字为,则个位上的数字为,根据所得到的新两位数与原来的两位数的乘积为736,可列出方程求解即可.【详解】解:设原来的两位数十位上的数字为,则个位上的数字为,依题意可得:,解得:,,当时,,符合题意,原来的两位数是23,当时,,符合题意,原来的两位数是32,∴原来的两位数是23或32,故选AB.【考点】本题考查了一元二次方程的应用,解题的关键是能正确用每一数位上的数字表示这个两位数.3、ABCD【解析】【分析】根据圆周角定理即可得出平分,证明全等即可得到,根据即可得到,即可得到;【详解】∵是半圆的直径,∴,又∵,∴,∵,∴,又∵,∴,∴,∴平分,故A正确;又∵,,∴,∴,故B正确;∵,∴,又∵∠CDE=∠COD=45°,∴,故C正确;∴,∴,故D正确;故选ABCD.【考点】本题主要考查了圆周角定理、直角三角形的性质、全等三角形的判定与性质、相似三角形的判定与性质,准确计算是解题的关键.4、BCD【解析】【分析】由圆周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的内心可得∠EAB+∠EBA=45°,从而得出∠AEF=45°,进一步得到△ABC是等腰直角三角形,再由垂径定理得EF=EB,从而可得AE=EB,由中位线定理得AE=2OE=2,最后求出.【详解】∵AB为直径,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的内心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故选项B正确,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故选项C正确,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故选项A错误,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故选项D正确,故选:BCD【考点】本题主要考查了垂径定理,圆周角定理,中位线定理,三角形内心性质,等腰直角三角形,等知识,证明△ABC是等腰直角三角形是解题的关键.5、ABC【解析】【分析】直接利用圆周角定理以及结合圆心角、弧、弦的关系、切线的判定方法、平行线的判定方法、四边形内角和分别分析得出答案.【详解】解:A.∵∠BAD=25°,∠EAD=25°,∴∠DAB=∠EAD∴,故此选项正确;B.∵∠BAD=25°,OA=OD,∴∠ADO=∠BAD=25°∵∠ADC=115°,∴∠ODC=∠ADC-∠ADC=115°-25°=90°,∴CD是⊙O的切线,故此选项正确;C.∵∠EAD=∠ADO=25°∴AE∥DO,故此选项正确;D.∵,,,∴∠OBC=360°-∠DAB-∠ADC-∠C=360°-25°-115°-90°=130°,故此选项错误.故选择ABC.【考点】此题主要考查了切线的判定以及圆周角与弧的关系、四边形内角和、平行线的判定方法等知识,正确掌握相关判定方法是解题关键.三、填空题1、【解析】【分析】连接OA,OC,根据∠COA=2∠CBA=90°可求出AC=,然后在Rt△ACD中利用三角函数即可求得CD的长.【详解】解:连接OA,OC,∵∠COA=2∠CBA=90°,∴在Rt△AOC中,AC=,∵CD⊥AB,∴在Rt△ACD中,CD=AC·sin∠CAD=,故答案为.【考点】本题考查了圆周角定理以及锐角三角函数,根据题意作出常用辅助线是解题关键.2、x=或x=2【解析】【分析】根据一元二次方程的解法解出答案即可.【详解】当x-2=0时,x=2,当x-2≠0时,4x=1,x=,故答案为:x=或x=2.【考点】本题考查解一元二次方程,本题关键在于分情况讨论.3、下【解析】【分析】根据二次函数二次项系数的大小判断即可;【详解】∵,∴抛物线开口向下;故答案是下.【考点】本题主要考查了判断抛物线的开口方向,准确分析判断是解题的关键.4、【解析】【分析】先把方程的左边分解因式,再化为三个一次方程进行降次,再解一次方程即可.【详解】解:则或或解得:故答案为:【考点】本题考查的是利用因式分解的方法把高次方程转化为一次方程,掌握“因式分解的方法与应用”是解本题的关键.5、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边,y随x增大而减小,得出a<0,于是去a=-1,即可解答.【详解】解:设抛物线的解析式为y=a(x-2)2,∵在抛物线对称轴的右边,y随x增大而减小,∴a<0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2.故答案为:y=-(x-2)2.【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质.四、解答题1、(1),(2),【解析】【分析】(1)将分解因式得到(x-2)(x-4)=0,得到x-2=0,x-4=0,解得,;(2)将化简得到,分解因式得到(x-3)(x+1)=0,得到x-3=0,x+1=0,求出,.(1),(x-2)(x-4)=0,x-2=0,x-4=0,x=2或x=4,∴,;(2)(2).,(x-3)(x+1)=0,x-3=0,x+1=0,x=3或x=-1,∴,.【考点】本题考查了解一元二次方程,解决问题的关键是把方程化成一般形式,用分解因式的方法解答.2、当b>1时,原方程的解为y=±;当b≤1时,原方程无实数解.【解析】【分析】把b看做常数根据解方程的步骤:先移项,再合并同类项,系数化为1,即可得出答案.【详解】解:移项得:by2﹣y2=2+1,合并同类项得:(b﹣1)y2=3,当b=1时,原方程无解;当b>1时,原方程的解为y=±;当b<1时,原方程无实数解.【考点】此题主要考查一元二次方程的求解,解题的关键是根据题意分类讨论.3、(1)每件降价20元(2)不可能,理由见解析【解析】【分析】(1)根据题意列出方程,即每件服装的利润×销售量=总盈利,再求解,把不符合题意的舍去;(2)根据题意列出方程进行求解即可.(1)解:设每件服装降价x元.由题意得:(90-x-50)(20+2x)=1200,解得:x1=20,x2=10,为使顾客得到较多的实惠,应取x=20;答:每件降价20元时,平均每天销售这种服装能盈利1200元,同时又要使顾客得到较多的实惠;(2)解:不可能,理由如下:依题意得:(90-x-50)(20+2x)=2000,整理得:x2-30x+600=0,Δ=(-30)2-4×600=900-2400=-1500<0,则原方程无实数解.则不可能每天盈利2000元.【考点】本题考查了一元二次方程的应用,解题的关键是找准等量关系,正确列出一元二次方程.4、(1)27(2)【解析】【分析】(1)根据t秒时,M、N两点的运动路程,分别表示出AM、BM、BN、CN的长度,由S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN进行列式即可得到S关于t的函数关系式,通过配方即可求得最小值;(2)当△DMN为直角三角形时,由∠MDN<90°,分∠NMD或∠MND为90°两种情况进行求解即可得.【详解】(1)由题意,得AM=tcm,BN=2tcm,则BM=(6-t)cm,CN=(12-2t)cm,∵S△DMN=S矩形ABCD-S△ADM-S△BMN-S△CDN,∴S=12×6-×12t-(6-t)·2t-×6(12-2t)=t2-6t+36=(t-3)2+27,∵t=3在范围0<t<6内,∴S的最小值为27cm2;(2)当△DMN为直角三角形时,∵∠MDN<90

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论