考点攻克沪科版9年级下册期末试题带答案详解(轻巧夺冠)_第1页
考点攻克沪科版9年级下册期末试题带答案详解(轻巧夺冠)_第2页
考点攻克沪科版9年级下册期末试题带答案详解(轻巧夺冠)_第3页
考点攻克沪科版9年级下册期末试题带答案详解(轻巧夺冠)_第4页
考点攻克沪科版9年级下册期末试题带答案详解(轻巧夺冠)_第5页
已阅读5页,还剩32页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,在中,,,将绕点C逆时针旋转90°得到,则的度数为()A.105° B.120° C.135° D.150°2、如图,点A、B、C在上,,则的度数是()A.100° B.50° C.40° D.25°3、如图,,,,都是上的点,,垂足为,若,则的度数为()A. B. C. D.4、小张同学去展览馆看展览,该展览馆有A、B两个验票口(可进可出),另外还有C、D两个出口(只出不进).则小张从不同的出入口进出的概率是()A. B. C. D.5、如图,AB是的直径,CD是的弦,且,,,则图中阴影部分的面积为()A. B. C. D.6、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个7、一个不透明的盒子里装有a个除颜色外完全相同的球,其中有6个白球,每次将球充分搅匀后,任意摸出1个球记下颜色然后再放回盒子里,通过如此大量重复试验,发现摸到白球的频率稳定在0.4左右,则a的值约为()A.10 B.12 C.15 D.188、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是()A.80° B.70° C.60° D.50°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在平行四边形中,,,,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为________.(结果保留)2、平面直角坐标系中,,,A为x轴上一动点,连接AC,将AC绕A点顺时针旋转90°得到AB,当BK取最小值时,点B的坐标为_________.3、一个直角三角形的斜边长cm,两条直角边长的和是6cm,则这个直角三角形外接圆的半径为______cm,直角三角形的面积是________.4、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)5、如图,在⊙O中,=,AB=10,BC=12,D是上一点,CD=5,则AD的长为______.6、一个不透明的袋子中放有3个红球和5个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率为_____.7、从﹣2,1两个数中随机选取一个数记为m,再从﹣1,0,2三个数中随机选取一个数记为n,则m、n的取值使得一元二次方程x2﹣mx+n=0有两个不相等的实数根的概率是_____.三、解答题(7小题,每小题0分,共计0分)1、如图,的直径cm,AM和BN是它的切线,DE与相切于点E,并与AM,BN分别相交于D,C两点.设,,求y关于x的函数解析式.2、如图,和中,,,,连接,点M,N,P分别是的中点.(1)请你判断的形状,并证明你的结论.(2)将绕点A旋转,若,请直接写出周长的最大值与最小值.3、如图,是由若干个完全相同的小正方体组成的一个几何体.从左面、上面观察如图所示的几何体,分别画出你所看到的平面图形.4、在等边中,是边上一动点,连接,将绕点顺时针旋转120°,得到,连接.(1)如图1,当、、三点共线时,连接,若,求的长;(2)如图2,取的中点,连接,猜想与存在的数量关系,并证明你的猜想;(3)如图3,在(2)的条件下,连接、交于点.若,请直接写出的值.5、对于平面直角坐标系xOy中的图形M,N,给出如下定义:若图形M和图形N有且只有一个公共点P,则称点P是图形M和图形N的“关联点”.已知点,,,.(1)直线l经过点A,的半径为2,在点A,C,D中,直线l和的“关联点”是______;(2)G为线段OA中点,Q为线段DG上一点(不与点D,G重合),若和有“关联点”,求半径r的取值范围;(3)的圆心为点,半径为t,直线m过点A且不与x轴重合.若和直线m的“关联点”在直线上,请直接写出b的取值范围.6、在一个不透明的盒子中装有四个只有颜色不同的小球,其中两个红球,一个黄球,一个蓝球.(1)搅匀后从中任意摸出1个球,恰好是红球的概率为_______;恰好是黄球的概率为________.(2)搅匀后从中任意摸出1个球,记录下颜色后放回袋子中并搅匀,再从中任意摸出1个球,用列表法或树形图的方法,求两次都是红球的概率.7、在平面直角坐标系中,的三个顶点坐标分别为.(每个方格的边长均为1个单位长度)(1)画出关于原点对称的图形,并写出点的坐标;(2)画出绕点O逆时针旋转后的图形,并写出点的坐标;(3)写出经过怎样的旋转可直接得到.(请将20题(1)(2)小问的图都作在所给图中)-参考答案-一、单选题1、B【分析】由题意易得,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:,∴;故选B.【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.2、C【分析】先根据圆周角定理求出∠AOB的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB=50°,∴∠AOB=100°,∵OA=OB,∴∠OAB=∠OBA=40°,故选:C.【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、B【分析】连接OC.根据确定,,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出.【详解】解:如下图所示,连接OC.∵,∴,.∴.∵.∴.∴∵和分别是所对的圆周角和圆心角,∴.故选:B.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.4、D【分析】先画树状图得到所有的等可能性的结果数,然后找到小张从不同的出入口进出的结果数,最后根据概率公式求解即可.【详解】解:列树状图如下所示:由树状图可知一共有8种等可能性的结果数,其中小张从不同的出入口进出的结果数有6种,∴P小张从不同的出入口进出的结果数,故选D.【点睛】本题主要考查了用列表法或树状图法求解概率,解题的关键在于能够熟练掌握用列表法或树状图法求解概率.5、C【分析】如图,连接OC,OD,可知是等边三角形,,,,计算求解即可.【详解】解:如图连接OC,OD∵∴是等边三角形∴由题意知,故选C.【点睛】本题考查了扇形的面积,等边三角形等知识.解题的关键在于用扇形表示阴影面积.6、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.7、C【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从摸到白球的频率稳定在0.4左右得到比例关系,列出方程求解即可.【详解】解:由题意可得,,解得,a=15.经检验,a=15是原方程的解故选:C.【点睛】本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据白球的频率得到相应的等量关系.8、A【分析】根据三角形旋转得出,,根据点A,D,E在同一条直线上利用邻补角关系求出,根据等腰三角形的性质即可得到∠DAC=50°,由此即可求解.【详解】证明:∵绕点C逆时针旋转得到,∴,,∴∠ADC=∠DAC,∵点A,D,E在同一条直线上,∴,∴∠DAC=50°,∴∠BAD=∠BAC-∠DAC=80°故选A.【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.二、填空题1、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:.【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.2、【分析】如图,作BH⊥x轴于H.由△ACO≌△BAH(AAS),推出BH=OA=m,AH=OC=4,可得B(m+4,m),令x=m+4,y=m,推出y=x﹣4,推出点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,作KM⊥EF于M,根据垂线段最短可知,当点B与点M重合时,BK的值最小,利用等腰直角三角形的性质可得M的坐标,从而可得答案.【详解】解:如图,作BH⊥x轴于H.∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,则作KM⊥EF于M,过作于则根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,﹣1),故答案为:(3,﹣1)【点睛】本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题.3、4【分析】设一直角边长为x,另一直角边长为(6-x)根据勾股定理,解一元二次方程求出,根据这个直角三角形的斜边长为外接圆的直径,可求外接圆的半径为cm,利用三角形面积公式求即可.【详解】解:设一直角边长为x,另一直角边长为(6-x),∵三角形是直角三角形,∴根据勾股定理,整理得:,解得,这个直角三角形的斜边长为外接圆的直径,∴外接圆的半径为cm,三角形面积为.故答案为;.【点睛】本题考查直角三角形的外接圆,直角所对弦性质,勾股定理,一元二次方程,三角形面积,掌握以上知识是解题关键.4、②③④【分析】①当在点的右边时,得出即可判断;②证明出即可判断;③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;④当时,有最小值,计算即可.【详解】解:,为等腰直角三角形,,当在点的左边时,,当在点的右边时,,故①错误;过点作,在和中,根据旋转的性质得:,,,,,故②正确;由①中得知为等腰直角三角形,,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,,即直线一定经过点,故③正确;是等腰直角三角形,当时,有最小值,,为等腰直角三角形,,,由勾股定理:,,故④正确;故答案是:②③④.【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.5、3【分析】过A作AE⊥BC于E,过C作CF⊥AD于F,根据圆周角定理可得∠ACB=∠B=∠D,AB=AC=10,再由等腰三角形的性质可知BE=CE=6,根据相似三角形的判定证明△ABE∽△CDF,由相似三角形的性质和勾股定理分别求得AE、DF、CF,AF即可求解.【详解】解:过A作AE⊥BC于E,过C作CF⊥AD于F,则∠AEB=∠CFD=90°,∵=,AB=10,∴∠ACB=∠B=∠D,AB=AC=10,∵AE⊥BC,BC=12,∴BE=CE=6,∴,∵∠B=∠D,∠AEB=∠CFD=90°,∴△ABE∽△CDF,∴,∵AB=10,CD=5,BE=6,AE=8,∴,解得:DF=3,CF=4,在Rt△AFC中,∠AFC=90°,AC=10,CF=4,则,∴AD=DF+AF=3+2,故答案为:3+2.【点睛】本题考查圆周角定理、等腰三角形的性质、相似三角形的判定与性质、勾股定理,熟练掌握圆周角定理和相似三角形的判定与性质是解答的关键.6、【分析】让红球的个数除以球的总数即为摸到红球的概率.【详解】解:∵红球的个数为3个,球的总数为3+5=8(个),∴摸到红球的概率为,故答案为:.【点睛】本题考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.7、【分析】先画树状图列出所有等可能结果,从中找到使方程有两个不相等的实数根,即m>n的结果数,再根据概率公式求解可得.【详解】解:画树状图如下:由树状图知,共有12种等可能结果,其中能使方程x2-mx+n=0有两个不相等的实数根,即m2-4n>0,m2>4n的结果有4种结果,∴关于x的一元二次方程x2-mx+n=0有两个不相等的实数根的概率是,故答案为:.【点睛】本题是概率与一元二次方程的根的判别式相结合的题目.正确理解列举法求概率的条件以及一元二次方程有根的条件是关键.三、解答题1、【分析】连接OC,OD,OE,根据切线的性质得到cm,,,推出,,根据,列得,从而求出函数解析式.【详解】解:连接OC,OD,OE,∵AD切于点A,CB切于点B,CD切于点E,直径cm∴cm,,,∴,,∵,∴∴..【点睛】此题考查了圆的切线的性质定理,全等三角形的判定及性质定理,求函数解析式,正确连线利用切线的性质是解题的关键.2、(1)是等腰直角三角形,证明见解析(2)周长最小值为。最大值为【分析】(1)连接BD,CE,根据SAS证明得BD=CE,根据三角形中位线性质可证明PM=PN;,进而可得结论;(2)当BD最小时即点D在AB上,此时周长最小,当点D在BA的延长线上时,BD最大,此时周长最大,均为,求出BD的长即可解决问题.(1)连接BD,CE,如图,∵,,,∴∴∴∴BD=CE,∵点M,N,P分别是的中点∴//,,PN//BD,PN=BD∴PM=PN,∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90°∴∴是等腰直角三角形;(2)由(1)知,是等腰直角三角形∴∴的周长为∵∴的周长为当BD最小时即点D在AB上,此时周长最小,∵AB=8,AD=3∴BD的最小值为AB-AD=8-3=5∴周长最小为当点D在BA的延长线上时,BD最大,此时周长最大,∴BD=AB+AD=8+3=11∴周长最大为【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.3、见解析【分析】根据几何体的三视图画法作图.【详解】解:如图,.【点睛】此题考查了画小正方体组成的几何体的三视图,正确掌握几何体的三视图的画图方法是解题的关键.4、(1);(2);证明见解析;(3)【分析】(1)过点作于点,根据等边三角形的性质与等腰的性质以及勾股定理求得,进而求得,在中,,,勾股定理即可求解;(2)延长至,使得,连接,过点作,交于点,根据平行四边形的性质可得,,证明是等边三角形,进而证明,即可证明是等边三角形,进而根据三线合一以及含30度角的直角三角形的性质,可得;(3)过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,先证明,结合中位线定理可得,进而可得,设,分别勾股定理求得,进而根据求得,即可求得的值【详解】(1)过点作于点,如图将绕点顺时针旋转120°,得到,是等边三角形,,在中,,(2)如图,延长至,使得,连接,过点作,交于点,点是的中点又四边形是平行四边形,将绕点顺时针旋转120°,得到,是等边三角形,,是等边三角形设,则,,,是等边三角形,即(3)如图,过点作于点,过点作,连接,交于点,过点作,交于点,过点作于点,四点共圆由(2)可知,将绕点顺时针旋转120°,得到,是的中点,是的中位线是等腰直角三角形四边形是矩形,设在中,,在中,在中【点睛】本题考查了旋转的性质,等边三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,同弧所对的圆周角相等,四点共圆,三角形全等的性质与判定,等腰三角形的性质与判定;掌握旋转的性质,等边三角形的性质与判定是解题的关键.5、(1)C(2)(3)【分析】(1)作出图形,根据切线的定义结合“关联点”即可求解;(2)根据题意,为等边三角形,则仅与相切时,和有“关联点”,进而求得半径r的取值范围;(3)根据关联点以及切线的性质,直径所对的角是直角,找到点的运动轨迹是以为圆心半径为的半圆在轴上的部分,进而即可求得的值.(1)解:如图,,,,,,轴,.的半径为2,直线与相切直线l和的“关联点”是点故答案为:(2)如图,根据题意与有“关联点”,则与相切,且与相离,是等边三角形为的中点,则当与相切时,则点为的内心半径r的取值范围为:(3)如图,设和直线m的“关联点”为,,交轴于点,是的切线,的圆心为点,半径为t,轴是的切线点的运动轨迹是以为圆心半径为的半圆在轴上的部分,则点,在直线上,当直线与相切时,即当点与点重合时

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论