




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省蓬莱市七年级上册有理数及其运算达标测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,数轴上4个点表示的数分别为a、b、c、d.若|a﹣d|=10,|a﹣b|=6,|b﹣d|=2|b﹣c|,则|c﹣d|=()A.1 B.1.5 C.1.5 D.22、嘉琪同学在计算时,运算过程正确且比较简便的是(
)A. B.C. D.3、计算的结果是(
)A.27 B. C. D.4、地球绕太阳公转的速度约为,数字110000用科学记数法表示应为(
)A. B.C. D.5、在计算|(-5)+□|的□中填上一个数,使结果等于11,这个数是()A.16 B.6 C.16或6 D.16或-66、如图,数轴上两点所对应的实数分别为,则的结果可能是(
)A. B.1 C.2 D.37、数1,0,,﹣2中最大的是(
)A.1 B.0 C. D.﹣28、如图,数轴上A,B两点分别表示数a,b,下列结论正确的是()A.b﹣a>0 B.|a|<|b| C.ab>0 D.a+b>09、数轴上表示-3的点到原点的距离是(
)A.-3 B.3 C. D.10、绍兴是一个充满生机和活力的地域,它古老而又年轻,区域内人口约为501万人.则501万用科学记数法可表示为(
)人.A.501×104 B.50.1×105 C.5.01×106 D.0.501×107第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、下列说法:①有理数除了正数,就是负数;②相反数大于本身的数是负数;③立方等于本身的数是;④若,则其中正确的有:_______(填序号).2、对于任意有理数a、b,定义一种新运算“⊕”,规则如下:a⊕b=ab+(a﹣b),例如3⊕2=3×2+(3﹣2)=7,则(﹣5)⊕4=_____.3、______;______.4、芝加哥与北京的时差是-14小时(负数表示同一时刻比北京晚),小明2019年11月4日7:00乘坐飞机从北京起飞,15小时后到达芝加哥,此时芝加哥的时间为________.5、计算:______.6、直接写出计算结果:(﹣8)×(﹣2020)×(﹣0.125)=________.7、点A和点B是数轴上的两点,点A表示的数为,点B表示的数为1,那么A、B两点间的距离为_____.8、中国高铁发展迅速,成为我国实力的新名片.至2019年,我国高铁营运里程达3.5万km,将35000用科学记数法表示为___.9、有理数在数轴上对应点位置如图所示,用“>”或“<”填空:(1)|a|______|b|;(2)a+b+c______0:(3)a-b+c______0;(4)a+c______b;(5)c-b______a.10、某工厂前年的产值为500万元,去年比前年的产值增加了,如果今年的产值估计比去年也增加了,那么该工厂今年的产值将是__________万元.三、解答题(6小题,每小题10分,共计60分)1、如图,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看出,终点表示数﹣2,已知点A是数轴上的点,请参照图示,完成下列问题:(1)如果点A表示数﹣3,将点A向右移动7个单位长度,那么终点表示的数是______;(2)如果点A表示数3,将点A向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是______;(3)如果点A表示数a,将点A向左移动m(m>0)个单位长度,再向右移动n(n>0)个单位长度,那么终点表示数是多少(用含a、m、n的式子表示)?2、计算题(1);(2)(3)(4)1+(-2)+(-3)+4+5+(-6)+(-7)+8+…+97+(-98)+(-99)+100的值.(5);(6)3、计算:(1)(2)4、5、计算:(1)16﹣17
(2)﹣4.3﹣(﹣5.7)(3)(4)(5)﹣|﹣6﹣14|﹣(﹣20)6、小鹏做了一个如图所示的程序图,按要求完成下列各小题.(1)当小鹏输入的数为5时,求输出的结果n;(2)若小鹏某次输入数m(m是非负数)后,输出的结果n为0.请你写出m可能的两个值.-参考答案-一、单选题1、D【解析】【分析】根据|a−d|=10,|a−b|=6得出b和d之间的距离,从而求出b和c之间的距离,然后假设a表示的数为0,分别求出b,c,d表示的数,即可得出答案.【详解】解:∵|a−d|=10,∴a和d之间的距离为10,假设a表示的数为0,则d表示的数为10,∵|a−b|=6,∴a和b之间的距离为6,∴b表示的数为6,∴|b−d|=4,∴|b−c|=2,∴c表示的数为8,∴|c−d|=|8−10|=2,故选:D.【考点】本题主要考查数轴上两点间的距离、绝对值的意义,关键是要能恰当的设出a、b、c、d表示的数.2、C【解析】【分析】分析题目可知,有理数的加减混合运算,先计算含有相同分母的两数,再把所得结果相加,运算简便.【详解】,故选:C.【考点】本题考查有理数的加减混合运算和简便运算,添括号法则,解题关键是熟练掌握有理数混合运算和添括号的法则.3、D【解析】【分析】先算乘方,后从左往右依次计算.【详解】解:原式===故选D.【考点】本题考查了有理数的混合运算,解题的关键是熟记运算法则和运算顺序.4、C【解析】【分析】科学记数法的表示形式为的形式,其中,为整数,确定的值时,要看把原数变成时,小数点移动了多少位,的绝对值与小数点移动的位数相同,当原数绝对值>1时,是正数,当原数的绝对值<1时,是负数.【详解】将110000用科学记数法表示为:,故选:C.【考点】本题考查科学记数法的表示方法,科学记数法的表示形式为的形式,其中,为整数,表示时关键要正确确定的值以及的值.5、D【解析】【分析】根据绝对值的性质和有理数的加法法则即可求得.【详解】解:|(-5)+□|=11,即(-5)+□=11或-11,∴□=16或-6,故选D.【考点】本题考查了绝对值以及有理数的加法,关键是得到(-5)+口=-11或11.6、C【解析】【分析】根据数轴确定和的范围,再根据有理数的加减法即可做出选择.【详解】解:根据数轴可得<<1,<<,则1<<3故选:C【考点】本题考查的知识点为数轴,解决本题的关键是要根据数轴明确和的范围,然后再确定的范围即可.7、A【解析】【分析】将各数按照从小到大顺序排列,找出最大的数即可.【详解】排列得:-2<<0<1,则最大的数是1,故选:A.【考点】此题考查了有理数大小比较,将各数正确的排列是解本题的关键.8、A【解析】【分析】观察知,,,从而可对各选项进行判断.【详解】由数轴可得:,,则故,,,故选项A正确故选:A【考点】本题考查了数轴上两个数的大小比较,有理数的加减乘的运算法则等知识,掌握这些知识是关键,注意数形结合.9、B【解析】【分析】由题意可知表示-3的点与原点的距离是-3的绝对值以此分析即可.【详解】解:在数轴上表示-3的点与原点的距离是|-3|=3.故选:B.【考点】本题考查有理数与数轴,熟记数轴的特点以及绝对值的几何意义是解题的关键.10、C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【详解】解:501万=5010000=5.01×106,故选:C.【考点】本题考查了科学记数法的表示方法,关键是确定a的值以及n的值.二、填空题1、②【解析】【分析】据有理数的概念和乘方运算逐个检查,找出正确说法作答.【详解】对于①,有理数除了正数和负数之外还有0,故①错误;对于②,负数的相反数是正数,正数大于负数,故②正确;对于③,由,,得立方等于本身的数不只有,故③错误;对于④,由,但,得④错误.故答案为:②.【考点】此题考查有理数的分类,相反数的意义,乘方的意义和绝对值的性质.其关键是要对相关知识的熟练掌握.2、﹣29【解析】【分析】根据a⊕b=ab+(a﹣b),可以求得题目中所求式子的值,本题得以解决.【详解】解:∵a⊕b=ab+(a﹣b),∴(﹣5)⊕4=(﹣5)×4+[(﹣5)﹣4]=(﹣20)+(﹣9)=﹣29.故答案为:﹣29.【考点】此题考查新定义运算,有理数的混合运算,掌握新定义的运算方法是解题的关键.3、
7
【解析】略4、2019年11月4日8时【解析】【分析】根据题意用7加上15求出北京时间然后减去14,然后根据有理数的减法和加法运算法则进行计算即可得解.【详解】解:7+15-14=7+1=8,所以到达芝加哥的时间为2019年11月4日8时.故答案为:2019年11月4日8时.【考点】本题考查有理数的减法,读懂题目信息,表示出芝加哥的时间是解题的关键.5、【解析】【分析】根据有理数除法法则:除以一个数相当于乘以这个数的倒数,然后再根据有理数的乘法法则进行计算.【详解】解:.故答案为:.【考点】本题考查有理数的除法,解题的关键是掌握有理数的除法运算法则.6、﹣2020【解析】【分析】根据乘法的交换和结合律,进行简便计算,即可求解.【详解】解:(﹣8)×(﹣2020)×(﹣0.125)=(﹣8)×(﹣0.125)×(﹣2020)=1×(﹣2020)=﹣2020.故答案为:﹣2020.【考点】本题主要考查有理数的乘法运算,掌握乘法交换律和结合律,是解题的关键.7、【解析】【分析】数轴上两点之间的距离,用在数轴右边的点所对应的数减左边的点所对应的数或加绝对值符号即可.【详解】解:本题主要考查数轴上两点间的距离,点A和点B间的距离是,故答案是:.【考点】本题考查了数轴上两点之间的距离,解题的关键是理解距离是非负数.8、【解析】【分析】科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:35000=,故答案为:.【考点】此题考查科学记数法的表示方法.科学记数法的表示形式为a×的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9、
<
<
>
>
>【解析】【分析】首先根据数轴可得b<a<0<c,然后再结合绝对值的性质和有理数的加减法法法则进行计算即可.【详解】解:(1)∵根据数轴可得b<a<0<c,∴|a|<|b|故答案为:<;(2)∵a<0<c,|a|>|c|,∴a+c<0,∴a+b+c<0;故答案为:<;(3)∵a-b>0,∴a-b+c>0;故答案为:>;(4)∵a>b,∴a+c>b;故答案为:>;(5)∵c>b,∴c-b>0,∴c-b>a.故答案为:>;【考点】此题主要考查了有理数的比较大小,关键是掌握绝对值的定义和有理数的加减法法法则.10、605.【解析】【分析】先求出去年的产值=前年的产值×(1+增长率),再用公式今年的产值=去年的产值×(1+增长率),求出今年的产值.【详解】解:去年比前年的产值增加了,去年的产值为:500×(1+10%)=550万元,今年的产值估计比去年也增加了,今年的产值为:550×(1+10%)=605万元.故答案为:605.【考点】本题考查增长率问题,掌握增长率的解题方法,抓住第二年的产值=第一年的产值×(1+增长率)是解题关键.三、解答题1、(1)4(2)1(3)终点表示数是(a﹣m+n)【解析】【分析】(1)根据-3点为A,右移7个单位得到B点为-3+7=4,则可以得出答案;(2)根据3表示为A点,将点A向左移动7个单位长度,再向右移动5个单位长度,得到点为3-7+5=1,可以得出答案;(3)方法同(2),根据数轴上表示的数左减右加的原则计算即可..(1)∵点A表示数﹣3,∴点A向右移动7个单位长度,终点B表示的数是﹣3+7=4,故答案是:4;(2)∵点A表示数3,∴将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是3﹣7+5=1;故答案是:1;(3)∵A点表示的数为a,∴将A点向左移动m个单位长度,再向右移动n个单位长度,那么终点表示数是(a﹣m+n).【考点】本题考查的是数轴的定义及数轴上两点之间的距离公式,弄清题中的规律是解本题的关键.2、(1)10;(2)-18;(3)111109;(4)0;(5);(6)【解析】【分析】(1)依据有理数的运算法则,先去小括号,再去中括号,最后依次进行计算即可;(2)依据有理数的运算法则,先去小括号,再依次进行计算即可;(3)将各代分数进行变形,然后利用加法结合律,进行计算即可;(4)根据各数字的规律,发现四个一组进行组合计算即可;(5)通过观察发现各分数分母规律,尽心变换,然后提取公因式进行计算,从而简化运算;(6)先化简绝对值符号内的运算,然后去绝对值再进行计算即可.【详解】(1)原式;(2)原式;(3)原式=;(4),;(5);(6)原式.【考点】题目主要
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 工业企业安全隐患排查制度
- 脑卒中患者健康管理方案
- 小学数学应用题能力提升训练
- 中考期末作文写作范本与技巧总结
- 2025年不孕不育医院项目合作计划书
- 2025-2030光伏制氢项目经济性测算与示范项目运营数据报告
- 2025-2030光伏制氢产业链协同发展模式与经济效益评估
- 2025-2030儿童财商教育游戏化产品开发现状与银行合作模式探索
- 2025-2030儿童神经反馈训练系统的技术迭代与家庭医疗设备市场竞争格局
- 2025-2030儿童数学能力早期培养的神经教育学视角
- 一国两制课件
- 2025年全国国家版图知识竞赛题库及答案(中小学组)
- 十一节后收心会安全培训课件
- 隔震支座安装施工方案
- 研究借鉴晋江经验-加快构建三条战略通道
- 他克莫司治疗肾病综合征优势课件
- 新版GMP教程第五章设备课件
- 99S203 消防水泵接合器安装图集
- 轴承故障诊断演示文稿
- 高原性红细胞增多症的观察和护理
- 大连理工.电机与拖动PPT课件11章全744P
评论
0/150
提交评论