




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山西省汾阳市中考数学真题分类(勾股定理)汇编专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,在△ABC中,∠BAC=90°,BC=5,以AB,AC为边作正方形,这两个正方形的面积和为(
)A.5 B.9 C.16 D.252、在自习课上,小芳同学将一张长方形纸片ABCD按如图所示的方式折叠起来,她发现D、B两点均落在了对角线AC的中点O处,且四边形AECF是菱形.若AB=3cm,则阴影部分的面积为()A.1cm2 B.2cm2 C.cm2 D.cm23、如图,小巷左右两侧是竖直的墙,一架梯子斜靠在左墙时,梯子底端到左墙角的距离为0.7米,顶端距离地面2.4米,如果保持梯子底端位置不动,将梯子斜靠在右墙时,顶端距离地面2米,那么小巷的宽度为(
)A.0.7米 B.1.5米 C.2.2米 D.2.4米4、如图,在水塔O的东北方向24m处有一抽水站A,在水塔的东南方向18m处有一建筑工地B,在AB间建一条直水管,则水管AB的长为(
)A.40m B.45m C.30m D.35m5、如图,由6个相同小正方形组成的网格中,A,B,C均在格点上,则∠ABC的度数为(
)A.45° B.50° C.55° D.60°6、《九章算术》“勾股”章有一题:“今有户高多于广六尺八寸,两隅相去适一丈.问户高、广各几何.”大意是说:已知长方形门的高比宽多6尺8寸,门的对角线长1丈,那么门的高和宽各是多少(1丈=10尺,1尺=10寸)?若设门的宽为x寸,则下列方程中,符合题意的是()A.x2+12=(x+0.68)2 B.x2+(x+0.68)2=12C.x2+1002=(x+68)2 D.x2+(x+68)2=10027、“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲.如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形.设直角三角形较长直角边长为a,较短直角边长为b.若ab=8,大正方形的面积为25,则小正方形的边长为A.9 B.6 C.4 D.3第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、《九章算术》中有“折竹抵地”问题:“今有竹高一丈,末折抵地,去根三尺,问折者高几何?”题意是:有一根竹子原来高1丈(1丈=10尺),中部有一处折断,竹梢触地面处离竹根3尺,试问折断处离地面多高?如图,设折断处距离地面x尺,根据题意,可列方程为______.2、如图,矩形ABCD中,AD=6,AB=8.点E为边DC上的一个动点,△AD'E与△ADE关于直线AE对称,当△CD'E为直角三角形时,DE的长为__.3、在Rt△ABC中,∠C=90°,且AC∶BC=1∶7,AB=100米,则AC=_________米.4、如图,在一次综合实践活动中,小明将一张边长为的正方形纸片,沿着边上一点与点的连线折叠,点是点的对应点,延长交于点,经测量,,则的面积为______.5、如图所示,在△ABC中,∠B=90°,AB=3,AC=5,将△ABC折叠,使点C与点A重合,折痕为DE,则△ABE的周长为.6、《九章算术》中有一道“引葭赴岸”问题:“今有池一丈,葭生其中央,出水一尺,引葭赴岸,适与岸齐.问水深,葭长各几何?”题意是:有一个池塘,其底面是边长为10尺的正方形,一棵芦苇AB生长在它的中央,高出水面部分BC为1尺.如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B'(如图).则芦苇长_____尺.7、公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”,它由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果小正方形面积是49,直角三角形中较小锐角θ的正切为,那么大正方形的面积是_____.8、如图,在中,,于点D.E为线段BD上一点,连结CE,将边BC沿CE折叠,使点B的对称点落在CD的延长线上.若,,则的面积为__________.三、解答题(7小题,每小题10分,共计70分)1、如图,点B,F,C,E在同一条直线上,,且.(1)求证:.(2)若,,,求BE的长.2、如图,高速公路上有A,B两点相距10km,C,D为两村庄,已知DA=4km,CB=6km,DA⊥AB于点A,CB⊥AB于B,现要在AB上建一个服务站E,使得C,D两村庄到E站的距离相等,求BE的长.3、如图,烟台市正政府决定在相距50km的A、B两村之间的公路旁E点,修建一个大樱桃批发市场,且使C、D两村到E点的距离相等,已知DA⊥AB于A,CB⊥AB于B,DA=30km,CB=20km,那么大樱桃批发市场E应建什么位置才能符合要求?4、我方侦查员小王在距离东西向公路400米处侦查,发现一辆敌方汽车在公路上疾驶.他赶紧拿出红外线测距仪,测得汽车与他相距400米,10秒后,汽车与他相距500米,你能帮小王计算敌方汽车的速度吗?5、细心观察图形,认真分析各式,然后解答问题.OA22=,;OA32=12+,;OA42=12+,…(1)请用含有n(n是正整数)的等式表示上述变规律:OAn2=______;Sn=______.(2)求出OA10的长.(3)若一个三角形的面积是,计算说明他是第几个三角形?(4)求出S12+S22+S32+…+S102的值.6、如图所示,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为ts.(1)出发3s后,求PQ的长;(2)当点Q在边BC上运动时,出发多久后,△PQB能形成等腰三角形?(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.7、设直角三角形的两条直角边长及斜边上的高分别为a,b及h,求证:.-参考答案-一、单选题1、D【解析】【分析】设,根据勾股定理可得,即可求解.【详解】解:设,根据勾股定理可得,即两个正方形的面积和为25故选:D【考点】本题考查了勾股定理,掌握勾股定理是解题的关键.2、D【解析】【分析】由菱形的性质得到∠FCO=∠ECO,进而证明∠ECO=∠ECB=∠FCO=30°,2BE=CE,利用勾股定理得出BC=,再解得菱形的面积为2,最后由阴影部分的面积=S菱形AECF解题.【详解】解:∵四边形AECF是菱形,AB=3,∴假设BE=x,则AE=3﹣x,CE=3﹣x,∵四边形AECF是菱形,∴∠FCO=∠ECO,∵∠ECO=∠ECB,∴∠ECO=∠ECB=∠FCO=30°,2BE=CE,∴CE=2x,∴2x=3﹣x,解得:x=1,∴CE=2,利用勾股定理得出:BC2+BE2=EC2,BC=,又∵AE=AB﹣BE=3﹣1=2,则菱形的面积是:AE•BC=2.∴阴影部分的面积=S菱形AECF=cm2.故选:D.【考点】本题考查菱形的性质、勾股定理、含30°直角三角形的性质等知识,是重要考点,掌握相关知识是解题关键.3、C【解析】【分析】在直角三角形中利用勾股定理计算出直角边,即可求出小巷宽度.【详解】在Rt△A′BD中,∵∠A′DB=90°,A′D=2米,BD2+A′D2=A′B′2,∴BD2+22=6.25,∴BD2=2.25,∵BD>0,∴BD=1.5米,∴CD=BC+BD=0.7+1.5=2.2米.故选:C.【考点】本题考查勾股定理的运用,利用梯子长度不变找到斜边是关键.4、C【解析】【分析】由题意可知东北方向和东南方向间刚好是一直角,利用勾股定理解图中直角三角形即可.【详解】解:∵OA是东北方向,OB是东南方向,∴∠AOB=90°,又∵OA=24m,OB=18m,∴30m.故选:C.【考点】本题考查的知识点是解直角三角形的应用,正确运用勾股定理,善于观察题目的信息是解题以及学好数学的关键.5、A【解析】【分析】连接AC,利用勾股定理分别求出AB、AC、BC,根据勾股定理的逆定理得到△ABC是等腰直角三角形,∠ACB=90°,再根据三角形内角和定理得到答案.【详解】连接AC,∵,,,∴,AC=BC,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=(180°-∠ACB)=45°.故选A.【考点】本题考查了等腰三角形,勾股定理的逆定理,解决问题的关键是作辅助线构建三角形,熟练掌握等腰三角形的定义和性质,熟练运用勾股定理的逆定理判断直角三角形.6、D【解析】【分析】1丈=100寸,6尺8寸=68寸,设门的宽为x寸,则门的高度为(x+68)寸,利用勾股定理及门的对角线长1丈(100寸),即可得出关于x的一元二次方程,此题得解.【详解】解:1丈=100寸,6尺8寸=68寸.设门的宽为x寸,则门的高度为(x+68)寸,依题意得:x2+(x+68)2=1002.故选:D.【考点】本题主要考查了勾股定理的应用、由实际问题抽象出一元二次方程,准确计算是解题的关键.7、D【解析】【分析】由题意可知:中间小正方形的边长为:,根据勾股定理以及题目给出的已知数据即可求出小正方形的边长.【详解】解:由题意可知:中间小正方形的边长为:,每一个直角三角形的面积为:,,,或(舍去),故选:D.【考点】本题考查勾股定理,解题的关键是熟练运用勾股定理以及完全平方公式,本题属于基础题型.二、填空题1、【解析】【分析】根据勾股定理即可得出结论.【详解】解:设未折断的竹干长为尺,根据题意可列方程为:.故答案为:.【考点】本题考查的是勾股定理的应用,在应用勾股定理解决实际问题时勾股定理与方程的结合是解决实际问题常用的方法,关键是从题中抽象出勾股定理这一数学模型,画出准确的示意图.领会数形结合的思想的应用.2、3或6【解析】【分析】分两种情况分别求解,(1)当∠CED′=90°时,如图(1),根据轴对称的性质得∠AED=∠AED′=45′,得DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D,AD′=AD,DE=D′E,得A、D′、C在同一直线上,根据勾股定理得AC=10,设DE=D′E=x,则EC=CD−DE=8−x,根据勾股定理得,D′E2+D′C2=EC2,代入相关的值,计算即可.【详解】解:当∠CED′=90°时,如图(1),∵∠CED′=90°,根据轴对称的性质得∠AED=∠AED′=×90°=45°,∵∠D=90°,∴△ADE是等腰直角三角形,∴DE=AD=6;(2)当∠ED′A=90°时,如图(2),根据轴对称的性质得∠AD′E=∠D=90°,AD′=AD,DE=D′E,△CD′E为直角三角形,即∠CD′E=90°,∴∠AD′E+∠CD′E=180°,∴A、D′、C在同一直线上,根据勾股定理得,∴CD′=10−6=4,设DE=D′E=x,则EC=CD−DE=8−x,在Rt△D′EC中,D′E2+D′C2=EC2,即x2+16=(8−x)2,解得x=3,即DE=3;综上所述:DE的长为3或6;故答案为:3或6.【考点】本题考查了矩形的性质、勾股定理、轴对称的性质,熟练掌握矩形的性质、勾股定理、轴对称的性质的综合应用,分情况讨论,作出图形是解题关键.3、【解析】【分析】首先根据BC,AC的比设出BC,AC,然后利用勾股定理列式计算求得a,即可求解.【详解】解:∵AC∶BC=1∶7,∴设AC=a,则BC=7a,∵∠C=90°,∴AB2=AC2+BC2,∴1002=a2+(7a)2,解得:a=10,∴AC=10米.故答案为:10.【考点】本题主要考查勾股定理,掌握勾股定理的内容是解题的关键.4、##【解析】【分析】根据题意,,进而求得,勾股定理求得,即可求得的面积.【详解】解:折叠,,,,∵四边形是正方形∴中..故答案为:【考点】本题考查了折叠的性质,勾股定理,掌握勾股定理是解题的关键.5、7【解析】【分析】根据勾股定理求得BC,再根据折叠性质得到AE=CE,进而由三角形的周长=AB+BC求解即可.【详解】∵在△ABC中,∠B=90°,AB=3,AC=5,∴BC=.∵△ADE是△CDE翻折而成,∴AE=CE,∴AE+BE=BC=4,∴△ABE的周长=AB+BC=3+4=7.故答案是:7.【考点】本题考查勾股定理、折叠性质,熟练掌握勾股定理是解答的关键.6、13【解析】【分析】将其转化为数学几何图形,如图所示,根据题意,可知B'C=5尺,设水深AC=x尺,则芦苇长(x+1)尺,根据勾股定理建立方程,求出的方程的解即可得到芦苇的长和水深.【详解】解:设水深x尺,则芦苇长(x+1)尺,在Rt△CAB′中,AC2+B′C2=AB′2,即x2+52=(x+1)2,解得:x=12,∴x+1=13,故芦苇长13尺,故答案为:13【考点】本题考查勾股定理,和列方程解决实际问题,能够在实际问题中找到直角三角形并应用勾股定理是解决本题的关键.7、169.【解析】【分析】由题意知小正方形的边长为7.设直角三角形中较小边长为a,较长的边为b,运用正切函数定义求解.【详解】解:由题意知,小正方形的边长为7,设直角三角形中较小边长为a,较长的边为b,则tanθ=短边:长边=a:b=5:12.所以b=a,①又以为b=a+7,②联立①②,得a=5,b=12.所以大正方形的面积是:a2+b2=25+144=169.故答案是:169.【考点】本题主要考查了解直角三角形、勾股定理的证明和正方形的面积,掌握解直角三角形、勾股定理的证明和正方形的面积是解题的关键.8、【解析】【分析】在△ABC中由等面积求出,进而得到,设BE=x,进而DE=DB-BE=,最后在中使用勾股定理求出x即可求解.【详解】解:在中由勾股定理可知:,∵,∴,∴,在中由勾股定理可知:,∴,设BE=x,由折叠可知:BE=B’E,且DE=DB-BE=,在中由勾股定理可知:,代入数据:∴,解得,∴,∴,故答案为:.【考点】本题考查了勾股定理求线段长、折叠的性质等,解题的关键是掌握折叠的性质,熟练使用勾股定理求线段长.三、解答题1、(1)见解析(2)6【解析】【分析】(1)根据已知条件利用证明即可;(2)根据勾股定理求解即可.(1)证明:∵.∴,∵,∴,又∵,∴(2)解:∵,,且,∴由勾股定理得,∴,∴【考点】本题考查了全等三角形的性质与判定,勾股定理解直角三角形,掌握以上知识是解题的关键.2、4km【解析】【分析】根据题意设出BE的长为xkm,再由勾股定理列出方程求解即可.【详解】解:设BE=xkm,则AE=(10﹣x)km,由勾股定理得:在Rt△ADE中,DE2=AD2+AE2=42+(10﹣x)2,在Rt△BCE中,CE2=BC2+BE2=62+x2,由题意可知:DE=CE,所以:62+x2=42+(10﹣x)2,解得:x=4.所以,EB的长是4km.【考点】本题考查了勾股定理的应用,熟练掌握勾股定理是解本题的关键.3、大樱桃批发市场E应建在离A站20千米的地方【解析】【分析】由勾股定理两直角边的平方和等于斜边的平方分别求出和,列等式求解即可.【详解】解:设大樱桃批发市场E应建在离A站x千米的地方,则千米.在直角中,根据勾股定理得:,∴,在直角中,根据勾股定理得:,∴.又∵C、D两村到E点的距离相等,∴,∴,所以,解得.∴大樱桃批发市场E应建在离A站20千米的地方.【考点】本题考查勾股定理的实际应用,掌握两直角边的平方和等于斜边的平方是解题的关键.4、速度为30米每秒【解析】【分析】根据勾股定理求得的长度,再根据速度等于路程除以时间即可求得敌方汽车的速度.【详解】,,米每秒,答:敌方汽车的速度为30米每秒.【考点】本题考查了勾股定理的应用,掌握勾股定理是解题的关键.5、(1)OAn2=n;Sn=;(2)OA10=;(3)说明他是第20个三角形;(4).【解析】【分析】(1)利用已知可得OAn2,注意观察数据的变化,(2)结合(1)中规律即可求出OA102的值即可求出,(3)若一个三角形的面积是,利用前面公式可以得到它是第几个三角形,(4)根据题意列出式子即可求出.【详解】(1)结合已知数据,可得:OAn2=n;Sn=;(2)∵OAn2=n,∴OA10=;(3)若一个三角形的面积是,根据:Sn==,∴=2=,∴说明他是第20个三角形,(4)S12+S22+S32+…+S102,=,=,=,=.故答案为(1)OAn2=n;Sn=;(2)OA10=;(3)说明他是第20个三角形;(4).【考点】本题考查规律型:图形的变化类,勾股定理的应用.6、(1)PQ=cm(2)出发秒后△PQB能形成等腰三角形(3)当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.【解析】【分析】(1)可求得AP和BQ,则可求得BP,由勾股定理即可得出结论;(2)用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025版高速公路建设用摊铺机设备租赁合作协议
- 2025版轻钢活动板房建设合同协议
- 2025典当行股份转让与跨境业务拓展合作协议书范本
- 贵州省纳雍县2025年上半年公开招聘村务工作者试题含答案分析
- 2025年度外墙真石漆智能化施工承包合同协议
- 2025房地产与文化产业园合作开发协议
- 2025年度财务人员薪酬福利调整合同范本
- 2025年度陵园墓园消防安全检查及维护合同
- 2025版砌墙工程节能评估与认证合同
- 2025版农业用地流转合同样本
- 2025-2026学年统编版小学语文四年级上册教学计划及进度表
- KTV突发事件安全应急预案
- 中资企业在非洲的安全风险应对策略与启示
- 2025年高考(陕西、山西、青海、宁夏卷)历史真题及答案
- 中职中专入学开学第一课正视职业教育开启未来征程课件
- 劳动课洗衣服课件
- 护士急诊重症外出学习汇报
- 2025年期货高管考试题库及答案
- 2024年黑龙江省肇源县卫生系统招聘考试(护理学专业知识)题含答案
- 2025年小学生“学宪法讲宪法”活动知识竞赛题库含答案
- 2025年江苏省南京市中考英语试卷
评论
0/150
提交评论