考点解析-四川泸县四中7年级数学下册第六章 概率初步专题测评试卷(含答案详解版)_第1页
考点解析-四川泸县四中7年级数学下册第六章 概率初步专题测评试卷(含答案详解版)_第2页
考点解析-四川泸县四中7年级数学下册第六章 概率初步专题测评试卷(含答案详解版)_第3页
考点解析-四川泸县四中7年级数学下册第六章 概率初步专题测评试卷(含答案详解版)_第4页
考点解析-四川泸县四中7年级数学下册第六章 概率初步专题测评试卷(含答案详解版)_第5页
已阅读5页,还剩17页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川泸县四中7年级数学下册第六章概率初步专题测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、用扇形统计图反应地球上陆地面积与海洋面积所占比例时,陆地面积所对应的圆心角是108°,当宇宙中一块陨石落在地球上,则落在陆地上的概率是()A.0.2 B.0.3 C.0.4 D.0.52、下列说法不正确的是()A.不可能事件发生的概率是0B.概率很小的事件不可能发生C.必然事件发生的概率是1D.随机事件发生的概率介于0和1之间3、下列说法正确的是()A.“明天降雨的概率是80%”表示明天有80%的时间都在降雨B.“抛一枚硬币正面朝上的概率为”表示每抛两次就有一次正面朝上C.“彩票中奖的概率是1%”表示买100张彩票肯定会中奖D.“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近4、下列成语中,描述确定事件的个数是()①守株待兔;②塞翁失马;③水中捞月;④流水不腐;⑤不期而至;⑥张冠李戴;⑦生老病死.A.5 B.4 C.3 D.25、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为()A. B. C. D.6、下列事件是必然事件的是()A.水中捞月B.抛掷一枚质地均匀的硬币,正面向上C.打开电视,正在播广告D.如果a、b都是实数,那么ab=ba7、如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为()A. B. C. D.8、一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,这些球除颜色外完全相同,其中有3个黄球,2个蓝球.则随机摸出一个红球的概率为()A. B. C. D.9、下列事件为随机事件的是()A.太阳从东方升起B.度量四边形内角和,结果是720°C.某射运动员射击一次,命中靶心D.四个人分成三组,这三组中有一组必有2人10、下列说法正确的是()A.“明天下雨的概率为99%”,则明天一定会下雨B.“367人中至少有2人生日相同”是随机事件C.抛掷10次硬币,7次正面朝上,则抛掷硬币正面朝上的概率为0.7.D.“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、一个可以自由转动的圆形转盘,转盘分三个扇形区域,分别涂上红、黄、白三种颜色,其中红色、黄色、白色区域的扇形圆心角度数分别为70°,80°,210°,则指针落在红色区域的概率是____________2、(1)“同时投掷两枚骰子,朝上的数字相乘为7”的概率是_______(2)在一个不透明的袋子中有10个除颜色外均相同的小球,通过多次摸球实验后,发现摸到白球的频率约为40%,估计袋中白球有____个.3、小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮王奶奶干活,则小明被选中的概率是___________,小明未被选中的概率是___________.4、有背面完全相同,正面分别画有等腰三角形、平行四边形、矩形、菱形、等腰梯形的卡片5张,现正面朝下放置在桌面上,将其混合后,并从中随机抽取一张,则抽中正面的图形一定是轴对称图形的卡片的概率为__.5、袋中装有3个黑球,6个白球(这些球除颜色外都相同),随机摸出一个球,恰好是白球的概率是________________.6、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是______.7、某班共有36名同学,其中男生16人,喜欢数学的同学有12人,喜欢体育的同学有24人.从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为a,这名同学喜欢数学的可能性为b,这名同学喜欢体育的可能性为c,则a,b,c的大小关系是___________.8、从分别写有2,4,5,6的四张卡片中任取一张,卡片上的数是偶数的概率为_____.9、转动如图所示的这些可以自由转动的转盘(转盘均被等分),当转盘停止转动后,根据“指针落在白色区域内”的可能性的大小,将转盘的序号按事件发生的可能性从小到大排列为______.10、下面4个说法中,正确的个数为_______.(1)“从袋中取出一只红球的概率是99%”,这句话的意思是肯定会取出一只红球,因为概率已经很大.(2)袋中有红、黄、白三种颜色的小球,这些小球除颜色外没有其他差别,因为小张对取出一只红球没有把握,所以小张说:“从袋中取出一只红球的概率是50%”.(3)小李说“这次考试我得90分以上的概率是200%”.(4)“从盒中取出一只红球的概率是0”,这句话是说取出一只红球的可能性很小.三、解答题(6小题,每小题10分,共计60分)1、一只不透明的袋子中有个红球、个绿球和个白球,这些球除颜色外都相同,将球搅匀,从中任意摸出个球.(1)会出现哪些可能的结果?(2)能够事先确定摸到的一定是红球吗?(3)你认为摸到哪种颜色的球的可能性最大?哪种颜色的球的可能性最小?(4)怎样改变袋子中红球、绿球、白球的个数,使摸到这三种颜色的球的概率相同?2、一个质地均匀的小正方体,六个面分别标有数字“1”“1”“2”“4”“5”“5”.掷小正方体后,观察朝上一面的数字.(1)出现“5”的概率是多少?(2)出现“6”的概率是多少?(3)出现奇数的概率是多少?3、一天晚上,小伟帮助妈妈清洗两个只有颜色不同的有盖荼杯,突然停电了,小伟只好把杯盖和茶杯随机地搭配在一起.求颜色搭配正确和颜色搭配错误的概率各是多少.4、某商场“五一”期间为进行有奖销售活动,设立了一个可以自由转动的转盘.商场规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品.下表是此次活动中的一组统计数据:转动转盘的次数n1002004005008001000落在“可乐”区域的次数m60122240298604落在“可乐”区域的频率0.60.610.60.590.604(1)完成上述表格;(结果全部精确到0.1)(2)请估计当n很大时,频率将会接近,假如你去转动该转盘一次,你获得“可乐”的概率约是;(结果全部精确到0.1)(3)转盘中,表示“洗衣粉”区域的扇形的圆心角约是多少度?5、为庆祝中国共产党成立100周年,在中小学生心中厚植爱党情怀,我市开展“童心向党”教育实践活动,某校准备组织学生参加唱歌,舞蹈,书法,国学诵读活动,为了解学生的参与情况,该校随机抽取了部分学生进行“你愿意参加哪一项活动”(必选且只选一种)的问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:(1)这次抽样调查的总人数为______人;(2)若该校有1400名学生,估计选择参加舞蹈的有多少人?(3)学校准备从推荐的4位同学(两男两女)中选取2人主持活动,利用画树状图或表格法求恰为一男一女的概率.6、端午节吃粽子是中华民族的传统习俗.据了解,甲厂家生产,,三个品种的盒装粽子,乙厂家生产,两个品种的盒装粽子.端午节前,某商场在甲、乙两个厂家中各选购一个品种的盒装粽子销售.(1)试用画树状图或列表的方法写出所有选购方案.(2)求甲厂家的品种粽子被选中的概率.-参考答案-一、单选题1、B【分析】先比较平均数得到甲组和乙组产量较好,然后比较方差得到乙组的状态稳定.【详解】解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比例为:108÷360=,∴宇宙中一块陨石落在地球上,落在陆地的概率是=0.3,故选B.【点睛】此题主要考查了几何概率,以及扇形统计图.用到的知识点为:概率=相应的面积与总面积之比.2、B【分析】根据概率的意义分别判断后即可确定正确的选项.【详解】解:A.不可能事件发生的概率是0,故该选项正确,不符合题意;B.概率很小的事件也可能发生,故该选项不正确,符合题意;C.必然事件发生的概率是1,故该选项正确,不符合题意;D.随机事件发生的概率介于0和1之间,故该选项正确,符不合题意;故选B【点睛】本题考查概率的意义,理解概率的意义反映的只是这一事件发生的可能性的大小:必然发生的事件发生的概率为1,随机事件发生的概率大于0且小于1,不可能事件发生的概率为0.3、D【分析】根据概率的意义去判断即可.【详解】∵“明天降雨的概率是80%”表示明天有降雨的可能性是80%,∴A说法错误;∵抛一枚硬币正面朝上的概率为”表示正面向上的可能性是,∴B说法错误;∵“彩票中奖的概率是1%”表示中奖的可能性是1%,∴C说法错误;∵“抛一枚均匀的正方体骰子,朝上的点数是2的概率为”表示随着抛掷次数的增加,“拋出朝上的点数是2”这一事件发生的概率稳定在附近,∴D说法正确;故选D.【点睛】本题考查了概率的意义,正确理解概率的意义是解题的关键.4、C【分析】根据个成语的意思,逐个分析判断是否为确定事件即可,根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件;必然事件:在一定条件下,一定会发生的事件称为必然事件;不可能事件:在一定条件下,一定不会发生的事件称为不可能事件;随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】解①守株待兔,是随机事件;②塞翁失马,是随机事件;③水中捞月,是不可能事件,是确定事件;④流水不腐,是确定事件;⑤不期而至,是随机事件;⑥张冠李戴,是随机事件;⑦生老病死,是确定事件.综上所述,③④⑦是确定事件,共3个故选C【点睛】本题考查了确定事件和随机事件的定义,熟悉定义是解题的关键.5、D【分析】直接利用概率公式求出即可.【详解】解:∵共四名候选人,男生3人,∴选到男生的概率是:.故选:D.【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比.6、D【分析】根据事先能肯定它一定会发生的事件称为必然事件依次判断即可.【详解】解:A.水中捞月不可能发生,是不可能事件,不符合题意;B.抛掷一枚质地均匀的硬币,正面向上,是随机事件,不符合题意;C.打开电视,正在播广告,是随机事件,不符合题意;D.如果a、b都是实数,那么ab=ba,是必然事件,符合题意;故选:D.【点睛】本题考查事件发生的可能性大小.事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可能不发生的事件,称为随机事件.7、B【分析】将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到27个小立方体,其中一个面涂色的有6块,可求出相应的概率.【详解】解:将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到3×3×3=27(个),有6个一面涂色的小立方体,所以,从27个小正方体中任意取1个,则取得的小正方体恰有一个面涂色的概率为,故选:B.【点睛】本题考查了概率公式,列举出所有等可能出现的结果数和符合条件的结果数是解决问题的关键.8、D【分析】在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,得出红球的个数,再根据概率公式即可得出随机摸出一个红球的概率.【详解】解:在一个不透明的口袋里有红、黄、蓝三种颜色的小球共9个,其中有3个黄球,2个蓝球,红球有:个,则随机摸出一个红球的概率是:.故选:D.【点睛】本题主要考查了概率公式的应用,解题的关键是掌握:概率所求情况数与总情况数之比.9、C【分析】根据随机事件的定义(指在一定条件下,可能发生也可能不发生的事件),判断选项中各事件发生的可能性的大小即可.【详解】解:A、太阳从东方升起,是必然事件,故A不符合题意;B、度量四边形内角和,结果是,是不可能事件,故B不符合题意;C、某射击运动员射击一次,命中靶心,是随机事件,故C符合题意;D、四个人分成三组,这三组中有一组必有2人,是必然事件,故D不符合题意;故选:C.【点睛】本题考查了随机事件,准确理解必然事件、不可能事件、随机事件的概念,判断各个事件发生的可能性是解题关键.10、D【分析】根据概率、随机事件和必然事件的定义逐项判断即可得.【详解】解:A、“明天下雨的概率为99%”,则明天不一定会下雨,原说法错误;B、“367人中至少有2人生日相同”是必然事件,则原说法错误;C、抛掷硬币要么正面朝上,要么正面朝下,则抛掷硬币正面朝上的概率为,则原说法错误;D、“抛掷一枚均匀的骰子,朝上的面点数为偶数”是随机事件,说法正确;故选:D.【点睛】本题考查了概率、随机事件和必然事件,掌握理解各概念是解题关键.二、填空题1、【分析】求出红色区域圆心角在整个圆中所占的比例,这个比例即为所求的概率.【详解】解:∵红色扇形区域的圆心角为70°,所以红色区域所占的面积比例为,即指针停在红色区域的概率是,故答案为:.【点睛】本题主要考查几何概率,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.2、04【分析】(1)朝上的数字相乘为7是不可能发生的,据此即可求解;(2)根据摸到白球的概率公式,列出方程求解即可.【详解】解:(1)朝上的数字相乘为7是不可能发生的.故“同时投掷两枚骰子,朝上的数字相乘为7”的概率是0.故答案为:0;(2)不透明的布袋中的小球除颜色不同外,其余均相同,共有10个小球,设其中白色小球x个,根据概率公式知:P(白色小球)==40%,解得:x=4.故答案为:4.【点睛】本题主要考查了概率公式的应用,一般方法为:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.3、【分析】根据简单事件概率计算公式计算即可.【详解】事件所有可能的结果是3种,小明被选中的结果有1种,未被选中的结果有2种,所以小明被选中的概率为,小明未被选中的概率为.故答案为:,【点睛】本题考查了求简单事件的概率,关键是掌握简单事件概率计算公式,并且求出所有可能结果数及某事件发生的结果数,则可求得该事件的概率.4、【分析】卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,再根据概率公式=满足条件的样本个数总体的样本个数,可求出最终结果.【详解】解:卡片中,轴对称图形有等腰三角形、矩形、菱形、等腰梯形,根据概率公式,(轴对称图形).故答案为:.【点睛】本题主要考查概率问题,属于基础题,掌握轴对称图形的性质以及概率公式是解题关键.5、【分析】求出摸出一个球的所有可能结果数及摸出一个白球的所有结果数,由概率计算公式即可得到结果.【详解】根据题意可得:袋子里装有将9个球,其中6个白色的,摸出一个球的所有可能结果数为9,摸出一个白球的所有结果数为6,则任意摸出1个,摸到白球的概率是=.故答案为:.【点睛】本题考查了简单事件概率的计算,求出事件所有可能的结果数及某事件发生的所有可能结果数是解题的关键.6、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案.【详解】根据题意,3的倍数有:3,6,9,共3个数∴摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:.【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解.7、c>a>b【分析】根据概率公式分别求出各事件的概率,故可求解.【详解】依题意可得从该班同学的学号中随意抽取1名同学,设这名同学是女生的可能性为,这名同学喜欢数学的可能性为,这名同学喜欢体育的可能性为,∵>>∴a,b,c的大小关系是c>a>b故答案为:c>a>b.【点睛】本题考查概率公式的基本计算,用到的知识点为:概率等于所求情况数与总情况数之比.8、【分析】根据概率的求法,让是偶数的卡片数除以总卡片数即为所求的概率.【详解】解答:解:∵四张卡片上分别标有数字2,4,5,6,其中有2,4,6,共3张是偶数,∴从中随机抽取一张,卡片上的数字是偶数的概率为,故答案为:.【点睛】点评:本题考查随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.9、①③②【分析】指针落在白色区域内的可能性是:白色÷总面积,比较白色部分的面积即可.【详解】解:指针落在白色区域内的可能性分别为:,,∴从小到大的顺序为:①③②.【点睛】此题主要考查了可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大;反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等.10、0【分析】有概率的定义:某事件发生可能性的大小,可对(1)进行判断;根据等可能性可对(2)进行判断;根据概率的取值范围:,可对(3)进行判断;根据不可能事件的概率为0,可对(4)进行判断.【详解】(1)中即使概率是99%,只能说取出红球的可能性大,但是仍然有取出不是红球的可能,所以(1)错误;(2)因为有三个球,机会相等,所以概率应该是,所以(2)错误;(3)概率的取值范围是,不可能达到,所以(3)错误;(4)概率为0,说明事件是不可能事件,故不可能取到红球,所以(4)错误.故答案为:0.【点睛】本题考查概率的定义,关键是理解概率是反映事件可能性大小的量,概率小的又可能发生,概率大的有可能不发生,一定发生的事件是必然事件,概率为1,可能发生也可能不发生的事件是随机事件,概率为,一定不发生的事件是不可能事件,概率为0.三、解答题1、(1)从中任意摸出个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.【分析】(1)根据事情发生的可能性,即可进行判断;(2)根据红球的多少判断,只能确定有可能出现;(3)根据白球的数量最多,摸出的可能性就最大,红球的数量最少,摸出的可能性就最小;(4)根据概率相等就是出现的可能性一样大,可让数量相等即可.【详解】解:(1)从中任意摸出1个球可能是红球,也可能是绿球或白球;(2)不能事先确定摸到的一定是红球;(3)摸到白球的可能性最大,摸到红球的可能性最小;(4)只要袋子中红球、绿球和白球的数量相等即可.【点睛】此题主要考查了事件发生的可能性,关键是根据事件发生的可能大小和概率判断即可,比较简单的中考常考题.2、(1)出现“5”的概率是;(2)出现“6”的概率是0;(3)出现奇数的概率是.【分析】(1)根据出现的机会有两次,再利用概率公式计算即可;(2)根据出现的机会没有,可得出现是不可能事件,从而可得其概率;(3)根据出现奇数的机会有四次,再利用概率公式计算即可.【详解】解:(1)因为出现的机会有两次,所以出现“5”的概率是:,(2)因为出现的机会没有,所以出现“6”的概率是:,(3)因为出现奇数的机会有四次,所以出现奇数的概率是【点睛】本题考查的是概率的含义与计算,掌握概率的计算方法是解题的关键.3、P(颜色搭配正确)=,P(颜色搭配错误)=.【分析】根据概率的计算公式,颜色搭配总共有4种可能,分别列出搭配正确和搭配错误的可能,进而求出各自的概率即可.【详解】用A和a分别表示第一个有盖茶杯的杯盖和茶杯;用B和b分别表示第二个有盖茶杯的杯盖和茶杯,经过搭配所能产生的结果如下:Aa、Ab、Ba、Bb.所以,一共有4种可能,颜色搭配正确的有2种可能,概率是;颜色搭配错误的有2种可能,概率是.P(颜色搭配正确)=,P(颜色搭配错误)=.【点睛】此题主要考查概率的计算公式:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,熟练运用公式是解题关键.4、(1)0.6;472;(2)0.6;0.6;(3)144°【分析】(1)根据频率的定义计算n=298时的频率和频率为0.59时的频数;(2)从表中频率的变化,可得到估计当n很大时,频率将会接近0.6,然后根据利用频率估计概率得“可乐”的概率约是0.6;(3)可根据获得“洗衣粉”的概率为1−0.6=0.4,然后根据扇形统计图的意义,用360°乘以0.4即可得到表示“洗衣粉”区域的扇形的圆心角.【详解】解:(1)298÷500≈0.6;0.59×800=472;补全表格如下:转动转盘的次数n1002004005008001000落在“可乐”区域的次

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论