




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省巩义市中考数学真题分类(平行线的证明)汇编专题测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图四边形ABCD中,,将四边形沿对角线AC折叠,使点B落在点处,若∠1=∠2=44°,则∠B为(
).A.66° B.104° C.114° D.124°2、已知,在中,,点在线段的延长线上,过点作,垂足为,若,则的度数为(
)A.76° B.65° C.56° D.54°3、如图,直线a,b被直线c所截,下列条件不能判定直线a与b平行的是()A.∠1=∠3 B.∠2+∠3=180° C.∠1=∠4 D.∠1+∠4=180°4、下列命题:①对顶角相等;②同位角相等,两直线平行;③若|a|=|b|,则a=b;④若x=2,则2|x|-1=3.以上命题是真命题的有(
).A.①②③④ B.①④ C.②④ D.①②④5、下列图形中,由AB∥CD,能得到∠1=∠2的是(
)A. B.C. D.6、一把直尺和一块三角板(含、角)如图所示摆放,直尺一边与三角板的两直角边分别交于点和点,另一边与三角板的两直角边分别交于点和点,且,那么的大小为()A. B. C. D.7、如图所示,下列推理及括号中所注明的推理依据错误的是(
)A.,(内错角相等,两直线平行)B.,(两直线平行,同旁内角互补)C.,(两直线平行,同旁内角互补)D.,(同位角相等,两直线平行)8、如图,已知△ABC中,BD、CE分别是边AC、AB上的高,BD与CE交于O点,如果设∠BAC=n°,那么用含n的代数式表示∠BOC的度数是()A.45°+n° B.90°﹣n° C.90°+n° D.180°﹣n°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,将三角形纸片ABC沿EF折叠,使得A点落在BC上点D处,连接DE,DF,.设,,则α与β之间的数量关系是________.2、如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是;3、命题“全等三角形的对应角相等”的逆命题是_____命题.(填“真”或“假”)4、如图,在四边形ABCD中,∠BCD=50°,∠B=∠D=90°,在BC、CD上分别取一点M、N,使△AMN的周长最小,则∠MAN=_____°.5、如图,在△ABC中,∠ACB=60°,∠BAC=75°,AD⊥BC于D,BE⊥AC于E,AD与BE交于H,则∠CHD=_____.6、如图,AF,AD分别是△ABC的高和角平分线,且∠B=36°,∠C=76°,则∠DAF=_____度.7、如图,在ΔABC中,E、F分别是AB、AC上的两点,∠1+∠2=235°,则∠A=____度.三、解答题(7小题,每小题10分,共计70分)1、如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,且∠3=115°,求∠ACB的度数.2、完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()3、如图,在中,,,AD是的角平分线,求的度数.4、已知:如图所示,DE⊥AC于点E,BC⊥AC于点C,FG⊥AB于点G,∠1=∠2,试说明CD⊥AB.5、如图,已知直线AB∥DF,∠D+∠B=180°.(1)试说明DE∥BC;(2)若∠AMD=75°,求∠AGC的度数.6、如图,在三角形ABC中CD为的平分线,交AB于点D,,.(1)求证:;(2)如果,,试证明.7、△ABC中,AD是∠BAC的角平分线,AE是△ABC的高.(1)如图1,若∠B=40°,∠C=60°.求∠DAE的度数.(2)如图2(∠B<∠C),试说明∠DAE与∠B、∠C的数量关系.
(3)拓展:如图3,四边形ABDC中,AE是∠BAC的角平分线,DA是∠BDC的角平分线,猜想:∠DAE与∠B、∠C的数量关系是否改变,说明理由.-参考答案-一、单选题1、C【解析】【分析】根据两直线平行,内错角相等可得,根据翻折变换的性质可得,然后求出∠BAC,再根据三角形的内角和等于180°列式计算即可得解.【详解】解:在ABCD中,,∴,∵ABCD沿对角线AC折叠,使点B落在点处,∴,∴,在△ABC中,∠B=180°-∠BAC-∠2=180°-22°-44°=114°.故选C.【考点】本题考查了翻折变换的性质,平行线的性质,三角形的内角和定理,掌握“翻折前后对应边相等,对应角相等”是解本题的关键.2、D【解析】【分析】根据三角形的内角和是,即可求解.【详解】,,在中,,,在中,,,故选:D.【考点】本题考查了垂直的性质和三角形的内角和,熟练掌握相关的性质是解题的关键.3、D【解析】【分析】同位角相等,两直线平行,同旁内角互补,两直线平行,根据平行线的判定方法逐一分析即可.【详解】解:(同位角相等,两直线平行),故A不符合题意;∠2+∠3=180°,(同旁内角互补,两直线平行)故B不符合题意;(同位角相等,两直线平行)故C不符合题意;∠1+∠4=180°,不是同旁内角,也不能利用等量代换转换成同旁内角,所以不能判定故D符合题意;故选D【考点】本题考查的是平行线的判定,对顶角相等,掌握“平行线的判定方法”是解本题的关键.4、D【解析】【分析】对于①,根据对顶角的性质即可判断命题正误;对于②,根据平行线的判定定理判断命题的正误;对于③,根据绝对值的性质知a=b,据此判断命题③的正误;对于④,把x=2代入2|x|-1可得2|x|-1=3,据此判断命题的正误,综上可选出正确答案.【详解】解:对于①,由对顶角的性质知,对顶角相等,故命题①为真命题;对于②,同位角相等,两直线平行,故命题②为真命题;对于③,如果|a|=|b|,则a=b,故命题③为假命题;对于④,若x=2,则2|x|-1=3,故④为真命题.综上可知,命题是真命题的有①②④.故选D.【考点】本题主要考查命题,熟知平行线及绝对值等各知识是解题的关键.5、B【解析】【分析】根据平行四边形的性质逐项判断即可.【详解】A、∵AB//CD,∴∠1+∠2=180°.故本选项不符合题意;B、如图,∵AB//CD,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C、∵AB//CD,∴∠BAD=∠CDA,不能得到∠1=∠2.故本选项不符合题意;D、当梯形ABDC是等腰梯形时才有,∠1=∠2.故本选项不符合题意.故选:B.【考点】本题考查平行线的性质,熟练掌握平行线的性质是解答的关键.6、B【解析】【分析】先利用三角形外角性质得到∠FDE=∠C+∠CED=140°,然后根据平行线的性质得到∠BFA的度数.【详解】,∵,∴.故选B.【考点】本题考查了平行线的性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.7、C【解析】【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:.,(内错角相等,两直线平行),正确;.,(两直线平行,同旁内角互补),正确;.,(两直线平行,同旁内角互补),故选项错误;.,(同位角相等,两直线平行),正确;故选:C.【考点】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.8、D【解析】【分析】由垂直的定义得到∠ADB=∠BDC=90,再根据三角形内角和定理得∠ABD=180﹣∠ADB﹣∠A=90﹣n,然后根据三角形的外角性质有∠BOC=∠EBD+∠BEO,计算即可得到∠BOC的度数.【详解】解:∵BD、CE分别是边AC,AB上的高,∴∠ADB=∠BDC=90,又∵∠BAC=n,∴∠ABD=180°﹣∠ADB﹣∠A=180﹣90﹣n=90﹣n,∴∠BOC=∠EBD+∠BEO=90°﹣n+90°=180﹣n.故选:D.【考点】本题考查了三角形的外角性质,垂直的定义以及三角形内角和定理,掌握以上性质定理是解答本题的关键.二、填空题1、【解析】【分析】由折叠的性质可知:,再利用三角形内角和定理及角之间的关系证明,,即可找出α与β之间的数量关系.【详解】解:由折叠的性质可知:,∵,∴,∴,∵,,∴,∴,故答案为:.【考点】本题考查折叠的性质,三角形内角和定理,解题的关键是根据折叠的性质求出,根据角之间的关系求出,.2、110°【解析】【详解】试题解析:∵∠1=∠2,∴ab,∴∠3=∠5,故答案为点睛:同位角相等,两直线平行.3、假【解析】【分析】首先分清题设是:两个三角形全等,结论是:对应角相等,把题设与结论互换即可得到逆命题,然后判断正误即可.【详解】解:“全等三角形的对应角相等”的题设是:两个三角形全等,结论是:对应角相等,因而逆命题是:对应角相等的三角形全等.是一个假命题.故答案为:假.【考点】本题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.4、80【解析】【分析】作点A关于BC、CD的对称点A1、A2,根据轴对称确定最短路线问题,连接A1、A2分别交BC、DC于点M、N,利用三角形的内角和定理列式求出∠A1+∠A2,再根据轴对称的性质和角的和差关系即可得∠MAN.【详解】如图,作点A关于BC、CD的对称点A1、A2,连接A1、A2分别交BC、DC于点M、N,连接AM、AN,则此时△AMN的周长最小,∵∠BCD=50°,∠B=∠D=90°,∴∠BAD=360°﹣90°﹣90°﹣50°=130°,∴∠A1+∠A2=180°﹣130°=50°,∵点A关于BC、CD的对称点为A1、A2,∴NA=NA2,MA=MA1,∴∠A2=∠NAD,∠A1=∠MAB,∴∠NAD+∠MAB=∠A1+∠A2=50°,∴∠MAN=∠BAD﹣(∠NAD+∠MAB)=130°﹣50°=80°,故答案为:80.【考点】本题考查了轴对称的最短路径问题,利用轴对称将三角形周长问题转化为两点间线段最短问题是解决本题的关键.5、45°##45°【解析】【分析】延长CH交AB于点F,锐角三角形三条高交于一点,所以CF⊥AB,再根据三角形内角和定理得出答案.【详解】解:延长CH交AB于点F,在△ABC中,三边的高交于一点,所以CF⊥AB,∵∠BAC=75°,且CF⊥AB,∴∠ACF=15°,∵∠ACB=60°,∴∠BCF=45°在△CDH中,三内角之和为180°,∴∠CHD=45°,故答案为:45°.【考点】本题考查三角形中,三条边的高交于一点,且内角和为180°.6、20【解析】【分析】根据角平分线的定义和高的定义结合三角形的内角和定理来解答.【详解】解:∵∠B=36°,∠C=76°,∴∠BAC=180﹣∠B﹣∠C=180°﹣76°﹣36°=68°,又∵AD是∠BAC的平分线,∴∠CAD=68°×=34°,在Rt△AFC中,∠FAC=90﹣∠C=90°﹣76°=14°,于是∠DAF=34°﹣14°=20°.故答案为:20.【考点】本题主要考查了角平分线、三角形高的定义和三角形的内角和定理.7、55【解析】【分析】根据三角形内角和定理可知,要求∠A只要求出∠AEF+∠AFE的度数即可.【详解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°−235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形内角和定理)∴∠A=180°−125°=55°,故答案为:55°【考点】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A所在的三角形是关键.三、解答题1、(1)平行;(2)115°.【解析】【分析】(1)先根据垂直的定义得到∠CDB=∠EFB=90°,然后根据同位角相等,两直线平行可判断EF∥CD;(2)由EF∥CD,根据平行线的性质得∠2=∠BCD,而∠1=∠2,所以∠1=∠BCD,根据内错角相等,两直线平行得到DG∥BC,所以∠ACB=∠3=115°.【详解】解:(1)CD与EF平行.理由如下:CD⊥AB,EF⊥AB,∴∠CDB=∠EFB=90°∴EF∥CD(2)如图:EF∥CD,∴∠2=∠BCD又∠1=∠2,∴∠1=∠BCD∴DG∥BC,∴∠ACB=∠3=115°.【考点】本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等.2、邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】依据∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB,则∠3=∠ADE,再根据∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同旁内角互补,即可得出结论.【详解】∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)【考点】本题考查了平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.3、102°【解析】【分析】由三角形内角和可得∠BAC=80°,然后由角平分线的定义可得,然后再根据三角形内角和可求解.【详解】解:在中,(三角形内角和定理).∵,(已知),∴(等式的性质).∵AD平分(已知),∴(角平分线的定义).在中,(三角形内角和定理).∵(已知),(已证),∴(等式的性质).【考点】本题主要考查角平分线的定义及三角形内角和,熟练掌握角平分线的定义及三角形内角和是解题的关键.4、证明见解析【解析】【分析】先利用垂直于同一条直线的两直线平行证明DE∥BC,利用内错角相等得∠2=∠DCF,即可证明GF∥DC,再利用平行线的传递性即可解题.【详解】证明:∵DE⊥AC,BC⊥AC,∴DE∥BC,∴∠2=∠DCF,又∵∠1=∠2,∴∠1=∠DCF,∴GF∥DC,又∵FG⊥AB,∴CD⊥AB.【考点】本题考查了平行线的性质和判定,中等难度,熟悉平行线的性质是解题关键.5、(1)证明见解析;(2)105°.【解析】【详解】(1)根据平行线的性质得出∠D+∠BHD=180°,等量代换得出∠B=∠DHB,根据平行线的判定得出即可;(2)根据平行线的性质求出∠AGB=∠AMD=75°,再根据邻补角的定义即可求出∠AGC的度数.(1)证明:∵AB∥DF,
∴∠D+∠BHD=180°,∵∠D+∠B=180°,∴∠B=∠DHB,∴DE∥BC.(2)解:∵DE∥BC,∠AMD=75°,∴∠AGB=∠AMD=75°,∴∠AGC=180°﹣∠AGB=180°﹣75°=105°.【考点】本题涉及的知识点是平行线的判定及性质.熟练掌握平行线的性质及判定并能准确识图是解题的关键.6、(1)见解析(2)见解析【解析】【分析】(1)先根据角平分线的定义求得∠ACB,进而说明∠ACB=∠3,然后运用同位角相等、两直线平行即可证明;(2)先根据两直线平行、内错角相等可得,进而得到∠BCD=∠2可得EF//DC,运用平行线的性质可得∠BFE=∠BDC,最后结合即可证明.(1)证明:∵CD平分,(已知)∴(角平分线的定义)又∵(已知)∴(等量代换)∴.(2)证明:由(1)知(已证)∴(两直线平行,内错角相等)又∵(已知)∴(等量代换)∴(同位角相等,两直线平行)∴(两直线平行,同位角相等)又∵(已知)∴(垂直的定义)∴(等量代换)∴(垂直的定义).【考点】本题主要考查了平行线的判定与性质、角平分线的定义等知识点,灵活运用平行线线的判定与性质成为解答本题的关键.7、(1)10°;(2)∠DAE∠C∠B,见解析;(3)不变,见解析【解析】【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年产品经理岗位竞聘全解析与答案
- 2025年外贸企业招聘面试英语模拟题集
- 2025年电力变压器知识考试题库及答案
- 猪场粪便处理与回收方案
- 生猪养殖场消毒管理方案
- 保障性租赁住房租户审核与分配方案
- 2025年大模型分布式训练框架试题(含答案与解析)
- 放射科三基三严定期培训考核计划
- 保障性租赁住房物业管理方案
- 深度解析:2025年基因检测在生物产业市场预测中的应用与市场潜力研究报告
- 2024数据要素典型案例集
- 二甲药剂科培训材料
- 医院科室副主任竞聘
- 《路由与交换技术》教学大纲
- 博士后研究报告(出站)
- 新人教版七年级上册生物全册教案(2024年秋季新版教材)
- 高标准农田改造提升建设项目投标方案(技术标)
- 汽车产品使用说明书
- 关于天然气安全知识
- (高清版)DZT 0331-2020 地热资源评价方法及估算规程
- 体育消费及消费者行为
评论
0/150
提交评论