难点解析人教版8年级数学上册《全等三角形》同步训练试题(解析卷)_第1页
难点解析人教版8年级数学上册《全等三角形》同步训练试题(解析卷)_第2页
难点解析人教版8年级数学上册《全等三角形》同步训练试题(解析卷)_第3页
难点解析人教版8年级数学上册《全等三角形》同步训练试题(解析卷)_第4页
难点解析人教版8年级数学上册《全等三角形》同步训练试题(解析卷)_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《全等三角形》同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,锐角△ABC的两条高BD、CE相交于点O,且CE=BD,若∠CBD=20°,则∠A的度数为()A.20° B.40° C.60° D.70°2、如图,在△OAB和△OCD中,OA=OB,OC=OD,OA>OC,∠AOB=∠COD=40°,连接AC,BD交于点M,连接OM,下列结论:①△AOC≌△BOD;②AC=BD;③∠AMB=40°;④MO平分∠BMC.其中正确的个数为()A.4 B.3 C.2 D.13、如图,矩形ABCD中,对角线AC的垂直平分线EF分别交BC,AD于点E,F,若BE=3,AF=5,则AC的长为(

)A. B. C.10 D.84、若△ABC≌△DEF,且△ABC的周长为20,AB=5,BC=8,则DF长为(

)A.5 B.8 C.7 D.5或85、如图,△ABC≌△ADE,∠B=80°,∠C=30°,∠DAC=35°,则∠EAC的度数为()A.40° B.30° C.35° D.25°第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,中,,三角形的外角和的平分线交于点E,则的度数为________.2、如图,已知△ABC≌△DBE,∠A=36°,∠B=40°,则∠AED的度数为_____.3、如图所示,在中,∠B=90°,AD平分∠BAC,交BC于点D,DE⊥AC,垂足为点E,若BD=3,则DE的长为________.4、如图,四边形ABCD,连接BD,AB⊥AD,CE⊥BD,AB=CE,BD=CD.若AD=5,CD=7,则BE=________.5、如图,MN∥PQ,AB⊥PQ,点A,D,B,C分别在直线MN和PQ上,点E在AB上,AD+BC=7,AD=EB,DE=EC,则AB=_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,AD平分∠BAC,∠C=90°,DE⊥AB于点E,点F在AC上,BD=DF.(1)求证:CF=EB;(2)若AB=14,AF=8,求CF的长.2、如图,若△OAD≌△OBC,且∠O=65°,∠BEA=135°,求∠C的度数.3、如图,在四边形ABCD中,已知BD平分∠ABC,∠BAD+∠C=180°,求证:AD=CD.4、如图,已知,.求证:.5、如图,在四边形ABCD中,BC>BA,AD=CD,BD平分∠ABC,求证:∠A+∠C=180°.-参考答案-一、单选题1、B【解析】【分析】由BD、CE是高,可得∠BDC=∠CEB=90°,可求∠BCD=70°,可证Rt△BEC≌Rt△CDB(HL),得出∠BCD=∠CBE=70°即可.【详解】解:∵BD、CE是高,∠CBD=20°,∴∠BDC=∠CEB=90°,∴∠BCD=180°﹣90°﹣20°=70°,在Rt△BEC和Rt△CDB中,,∴Rt△BEC≌Rt△CDB(HL),∴∠BCD=∠CBE=70°,∴∠A=180°﹣70°﹣70°=40°.故选:B.【考点】本题考查三角形高的定义,三角形全等判定与性质,三角形内角和公式,掌握三角形高的定义,三角形全等判定与性质,三角形内角和公式是解题关键.2、A【解析】【分析】由题意易得∠AOC=∠BOD,然后根据三角形全等的性质及角平分线的判定定理可进行求解.【详解】解:∵∠AOB=∠COD=40°,∠AOD是公共角,∴∠COD+∠AOD=∠BOA+∠AOD,即∠AOC=∠BOD,∵OA=OB,OC=OD,∴△AOC≌△BOD(SAS),∴AC=BD,∠OAC=∠OBD,∠ODB=∠OCA,故①②正确;过点O作OE⊥AC于点E,OF⊥BD于点F,BD与OA相交于点H,如图所示:∵∠AHM=∠OHB,∠AMB=180°-∠AHM-∠OAC,∠BOA=180°-∠OHB-∠OBD,∴∠AMB=∠BOA=40°,∴∠OEC=∠OFD=90°,∵OC=OD,∠OCA=∠ODB,∴△OEC≌△OFD(AAS),∴OE=OF,∴OM平分∠BMC,故③④正确;所以正确的个数有4个;故选A.【考点】本题主要考查全等三角形的性质与判定及角平分线的判定定理,熟练掌握全等三角形的性质与判定及角平分线的判定定理是解题的关键.3、A【解析】【分析】连接AE,由线段垂直平分线的性质得出OA=OC,AE=CE,证明△AOF≌△COE得出AF=CE=5,得出AE=CE=5,BC=BE+CE=8,由勾股定理求出AB=4,再由勾股定理求出AC即可.【详解】解:如图,连结AE,设AC交EF于O,依题意,有AO=OC,∠AOF=∠COE,∠OAF=∠OCE,所以,△OAF≌△OCE(ASA),所以,EC=AF=5,因为EF为线段AC的中垂线,所以,EA=EC=5,又BE=3,由勾股定理,得:AB=4,所以,AC=【考点】本题考查了全等三角形的判定、勾股定理,熟练掌握是解题的关键.4、C【解析】【分析】根据三角形的周长可得AC长,然后再利用全等三角形的性质可得DF长.【详解】∵△ABC的周长为20,AB=5,BC=8,∴AC=20−5−8=7,∵△ABC≌△DEF,∴DF=AC=7,故选C.【考点】此题主要考查了全等三角形的性质,关键是掌握全等三角形的对应边相等.5、C【解析】【分析】根据三角形的内角和定理列式求出∠BAC,再根据全等三角形对应角相等可得∠DAE=∠BAC,然后根据∠EAC=∠DAE-∠DAC代入数据进行计算即可得解.【详解】解:∵∠B=80°,∠C=30°,∴∠BAC=180°-80°-30°=70°,∵△ABC≌△ADE,∴∠DAE=∠BAC=70°,∴∠EAC=∠DAE-∠DAC,=70°-35°,=35°.故选C.【考点】本题考查了全等三角形对应角相等的性质,熟记性质并准确识图是解题的关键.二、填空题1、【解析】【分析】本题先通过三角形内角和求解∠BAC与∠BCA的和,继而利用邻补角以及角分线定义求解∠EAC与∠ECA的和,最后利用三角形内角和求解此题.【详解】∵,∴,又∵,,∴.∵三角形的外角和的平分线交于点E,∴,,∴,即.故填:.【考点】本题考查三角形内角和公式以及角分线和邻补角的定义,难度较低,按照对应考点定义求解即可.2、76°或76度【解析】【分析】根据全等三角形的性质得到∠A=∠D=36°,根据三角形的外角的性质即可得出答案.【详解】解:∵△ABC≌△DBE,∴∠A=∠D=36°,∵∠AED是△BDE的外角,∴∠AED=∠B+∠D=40°+36°=76°.故答案为:76°.【考点】本题考查了全等三角形的性质及三角形外角的性质,掌握全等三角形的对应角相等是解题的关键.3、3【解析】【分析】根据角平分线的性质,即角平分线上任意一点到角两边的距离相等计算即可;【详解】∵在中,∠B=90°,AD平分∠BAC,DE⊥AC,∴,∵,∴;故答案是3.【考点】本题主要考查了角平分线的性质应用,准确计算是解题的关键.4、2【解析】【分析】根据HL证明,可得,根据即可求解.【详解】解:AB⊥AD,CE⊥BD,,在与中,,,AD=5,CD=7,,BD=CD=7,故答案为:2【考点】本题考查了全等三角形的性质与判定,掌握HL证明三角形全等是解题的关键.5、7【解析】【详解】由MN∥PQ,AB⊥PQ,可知∠DAE=∠EBC=90°,可判定△ADE≌△BCE,从而得出AE=BC,则AB=AE+BE=AD+BC=7.故答案为:7.点睛:本题考查了直角三角形全等的判定和性质以及平行线的性质,是基础知识,比较简单.三、解答题1、(1)见详解(2)3【解析】【分析】(1)利用角平分线的性质可得,再利用“HL”证明,再利用全等三角形的性质求解;(2)利用“HL“证明,可得,设,则,,即可建立方程求解.(1)证明:∵于点E,∴.又∵AD平分,,∴,在和中,,∴,∴;(2)解:在和中,,∴,∴,设,则,,∴,解得,故.【考点】本题考查了直角三角形全等的判定与性质,角平分线的性质,在图形中找到正确的全等三角形以及熟悉直角三角形全等的性质与判定是关键.2、35º【解析】【分析】根据全等三角形对应角相等可得∠C=∠D,∠OBC=∠OAD,再根据三角形的内角和等于180°表示出∠OBC,然后利用四边形的内角和等于360°列方程求解即可.【详解】∴∠C=∠D,∠OBC=∠OAD,∵∠O=65º,∴∠OBC=180º−65º−∠C=115º−∠C,在四边形AOBE中,∠O+∠OBC+∠BEA+∠OAD=360º,∴65º+115º−∠C+135º+115º−∠C=360º,解得∠C=35º.【考点】此题考查了全等三角形的性质和四边形的内角和等于360°,熟练掌握这两个性质是解题的关键.3、见解析【解析】【详解】试题分析:在边BC上截取BE=BA,连接DE,根据SAS证△ABD≌△EBD,推出AD=ED,∠A=∠BED,求出∠DEC=∠C即可.试题解析:证明:在边BC上截取BE=BA,连接DE.∵BD平分∠ABC,∴∠ABD=∠CBD.在△ABD和△EBD中,,∴△ABD≌△EBD(SAS),∴AD=ED,∠A=∠BED.∵∠A+∠C=180°,∠BED+∠CED=180°,∴∠C=∠CED,∴CD=ED,∴AD=CD.点睛:本题考查了等腰三角形的判定,全等三角形的性质和判定等知识点的应用,解答此题的关键是正确作辅助线,又是难点,解题的思路是把AD和CD放到一个三角形中,根据等腰三角形的判定进行证明,题型较好,有一定的难度.4、见详解.【解析】【分析】根据SSS定理推出△ADB≌△BCA即可证明.【详解】证明:在△ADB和△BCA中,∴△ADB≌△BCA(SSS),∴.【考点】本题考查了全等三角形的性质和判定,能正确进行推理证明全等是解此题的关键.5、见解析【解析】【分析】先在线段BC上截取BE=BA,连接DE,根据BD平分∠ABC,可得∠ABD=∠EBD,根据,可判定△ABD≌△EBD,根据全等三角形的性质可得:AD=ED,∠A=∠BED.再根据AD=CD,等量代换可得ED=CD,根据等边对等角可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论