难点详解青岛版8年级数学下册期末测试卷含答案详解(培优A卷)_第1页
难点详解青岛版8年级数学下册期末测试卷含答案详解(培优A卷)_第2页
难点详解青岛版8年级数学下册期末测试卷含答案详解(培优A卷)_第3页
难点详解青岛版8年级数学下册期末测试卷含答案详解(培优A卷)_第4页
难点详解青岛版8年级数学下册期末测试卷含答案详解(培优A卷)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛版8年级数学下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列命题是真命题的是()A.三角形的外角大于与它相邻的内角B.立方根等于它本身的数是±1C.两个无理数的和还是无理数D.大于0且小于π的整数有3个2、与是同类二次根式的是(

)A. B. C. D.3、下列各数为无理数的是(

)A. B. C. D.04、若关于的一元一次不等式组的解集恰好有3个负整数解,且关于的分式方程有非负整数解,则符合条件的所有整数的和为(

)A.6 B.9 C. D.25、不等式组x+3>1−3x≥−3A. B.C. D.6、下列说法不正确的是(

)A.若,则 B.若,则C.若,则 D.若,则7、无理数的绝对值是(

)A. B. C. D.28、的算术平方根是(

)A.9 B. C.3 D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、我国古代数学著作《九章算术》中记载了一个问题:“今有池方一丈,葭(jiā)生其中,出水一尺.引葭赴岸(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,它高出水面1尺(即BC=1尺).如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处,问水的深度是多少?则水深DE为_____尺.2、如图,△ABC中,∠ACB=90°,AC=8,BC=6,点E是AB中点,将△CAE沿着直线CE翻折,得到△CDE,连接BD,则线段BD的长等于______.3、如图,将绕点按顺时针旋转一定角度得到,点的对应点恰好落在边上,若,,则的长为__________.4、在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图1,D、E分别是AB和CB边上的点,把△BDE沿直线DE折叠,若点B落在AC边上的点F处,则CE的最小值是_______;(2)如图2,CG是AB边上的中线,将△ACG沿CG翻折后得到△HCG,连接BH,则BH的长为______.5、如图,正方形的边长为3,E是上一点,,连接与相交于点F,过点F作,交于点G,连接,则点E到的距离为_____.6、的平方根为_____,的绝对值为____.7、一次函数y=(k﹣1)x+3的图象上任意不同两点M(x1,y1),N(x2,y2)满足:当x1<x2时,y1<y2.则k的取值范围是_____.三、解答题(7小题,每小题10分,共计70分)1、计算.2、如图1,在Rt△ABC中,∠ACB=90°,E是边AC上任意一点(点E与点A,C不重合),以CE为一直角边作Rt△ECD,∠ECD=90°,连接BE,AD.若AC=BC,CE=CD.(1)猜想线段BE,AD之间的数量关系及所在直线的位置关系,写出结论并说明理由;(2)现将图1中的Rt△ECD绕着点C顺时针旋转锐角α,得到图2,请判断①中的结论是否仍然成立,若成立,请证明;若不成立,请说明理由.3、计算:×+×+4、在△ABC中,∠ACB=90°,AC=BC=10,点D为AB的中点,连结DC.点E以每秒1个单位长度的速度从点A出发,沿射线AC方向运动,连结DE.过点D作DF⊥DE,交射线CB于点F,连结EF.设点E的运动时间为t(秒).(1)如图,当0<t<10时.①求证:∠ADE=∠CDF;②试探索四边形CEDF的面积是否为定值?若为定值,求出这个定值;若不为定值,请说明理由;(2)当t≥10时,试用含t的代数式表示△DEF的面积.5、如图所示(1)写出ABC三顶点的坐标;(2)在图上描出点A1(3,3),B1(2,﹣2),C1(4,﹣1),并说明ABC与A1B1C1的位置关系.6、计算:7、如图,已知△ABC是锐角三角形(AC<AB)(1)①请在图1中用圆规和无刻度的直尺作出点O,使O到△ABC三边距离相等;(不写作法,保留作图痕迹)②在①的条件下,若AB=15,AC=13,BC=14,则△ABC中BC边上的高=______,O到△ABC三边距离=______.(2)在△ABC中,若点P在△ABC内部(含边界)且满足PC≤PB≤PA,请在图2中用圆规和无刻度的直尺作出所有符合条件的点P组成的区域(用阴影表示).(不写作法,保留作图痕迹)-参考答案-一、单选题1、D【解析】【分析】根据三角形外角性质可判断A,根据立方根等于它本身列方程,两边立方得,再因式分解得出方程的解可判断B,列举反例可判断C,根据实数范围确定具体的整数,然后查出个数可判断D.【详解】A.三角形的外角大于与任何一个和它不相邻的内角,故选项A不是真命题;B.立方根等于它本身的数,,两边立方得,因式分解得,解得x=±1,0,故选项B不是真命题;C.两个无理数的和不一定是无理数例如2+与-,它们之和是有理数,故选项C不是真命题;D.大于0且小于π的整数为1,2,3,共有3个整数,故选项D是真命题.故选D.【点睛】本题考查真假命题的识别,掌握证明需要证明,假命题需举反例是解题关键.2、D【解析】【分析】将各选项化简,被开方数是2的二次根式是的同类二次根式,从而得出答案.【详解】解:A选项,,故该选项不符合题意;B选项,是最简二次根式,被开方数不是2,故该选项不符合题意;C选项,=2,故该选项不符合题意;D选项,,故该选项符合题意;故选:D.【点睛】本题考查了同类二次根式,二次根式的性质与化简,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.3、C【解析】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【详解】A.﹣4是整数,属于有理数,故本选项不合题意;B.是分数,属于有理数,故本选项不符合题意;C.是无理数,故选项合题意;D.0是整数,属于有理数,故选项不符合题意;故答案选:C【点睛】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…(每两个1之间的0依次增加1个),等有这样规律的数.4、A【解析】【分析】解一元一次不等式组求得解集,根据题意可求得a的取值范围,解分式方程得方程的解,根据分式方程的解为非负整数即可确定所有的a值,从而可求得其和.【详解】解不等式①得:;解不等式②得:由题意知不等式组的解集为:∵恰好有三个负整数解∴解得:解分式方程得:∵分式方程有非负整数解∴a+1是4的非负整数倍∵∴∴a+1=0或4或8即或3或7,即综上:或7,则故选:A【点睛】本题考查了解一元一次不等式组、解分式方程等知识,是方程与不等式的综合,根据不等式组有3个非负整数解,从而得出关于a的不等式是本题的难点与关键.5、B【解析】【分析】先分别求出各不等式的解集,再求其公共解集即可.【详解】解:,由①得x>﹣2,由②得x≤1,不等式组的解集为﹣2<x≤1.故选:B.【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.6、A【解析】【分析】利用不等式的性质逐项判断,得出答案即可.【详解】解:、若,则,时不成立,此选项错误,符合题意;B、若,则,此选项正确,不符合题意;C、若,则,此选项正确,不符合题意;D、若,则,此选项正确,不符合题意.故选:A.【点睛】此题考查不等式的性质,解题关键是熟记不等式的性质:性质、不等式的两边都加上或减去同一个数或同一个整式,不等号的方向不变.性质、不等式两边都乘或除以同一个正数,不等号的方向不变.性质、不等式两边都乘或除以同一个负数,不等号方向改变.7、B【解析】【分析】根据绝对值的定义来求解即可.【详解】解:无理数的绝对值是.故选:.【点睛】本题考查了算术平方根,无理数,实数的性质,正确理解负数的绝对值是正数是解答关键.8、C【解析】【分析】根据算术平方根的定义求解即可.【详解】解:∵,∴的算术平方根为3,故选:C.【点睛】本题考查算术平方根,会求一个数的算术平方根是解答的关键.二、填空题1、12【解析】【分析】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理列方程,解出h即可.【详解】设水深为h尺,则芦苇长为(h+1)尺,根据勾股定理,得(h+1)2-h2=52解得h=12,∴水深为12尺,故答案是:12.【点睛】本题主要考查勾股定理的应用,熟练根据勾股定理列出方程是解题的关键.2、【解析】【分析】延长CE交AD于F,过B作BG⊥CE于G,利用△BCE的面积,即可得到BG的长,再根据△AEF与△BEG全等,即可得到AF的长,进而得到AD的长,再证明再利用勾股定理可得答案.【详解】解:如图,延长CE交AD于F,过B作BG⊥CE于G,连接BD,∵∠ACB=90°,AC=8,BC=6,∴AB=10,∵∠ACB=90°,点E是AB中点,∴CE=AE=BE=5,S△BCE=S△ABC,∴CE×BG=AC×BC,即,由折叠可得,CF垂直平分AD,∴∠AFE=90°=∠BGE,又∵∠AEF=∠BEG,AE=BE,∴△AEF≌△BEG(AAS),∴AF=BG=,∴AD=2AF=故答案为【点睛】本题考查了轴对称以及直角三角形斜边中线的性质,线段的垂直平分线的判定与性质,勾股定理的应用,全等三角形的判定与性质,解题的关键是作辅助线构造全等三角形.折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.3、2【解析】【分析】根据旋转的性质得,由,于是可判断为等边三角形,根据等边三角形的性质得,然后利用进行计算.【详解】解:,∠BAC=90°,,,∴BC=2AB,,∴,、,由旋转的性质知,,是等边三角形,,则.故答案为:2【点睛】本题考查了旋转的性质,解题的关键是掌握旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了等边三角形的判定与性质.4、

【解析】【分析】(1)当点B与点A重合时,CE最小,设CE=x,由勾股定理得,代入数值求出x值即可;(2)根据勾股定理求出AB,利用中线的性质得到CG=AG,过点G作GD⊥AC于D,由翻折得,求出EH,过点G作GF⊥BH,证明四边形GEHF是矩形,得到GF=EH,勾股定理求出BF,由BH=2BF求出答案.【详解】解:(1)当点B与点A重合时,CE最小,如图,设CE=x,则BE=8-x,由折叠得AE=BE=8-x,∵∠ACB=90°,,∴,解得x=,即CE的最小值是,(2)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8.∴,∵CG是AB边上的中线,∴,AG=BG=5,∴CG=AG,过点G作GD⊥AC于D,则,∴DG=4,由翻折得,∴,∴,得,过点G作GF⊥BH,∵GH=AG=BG,∴FH=BF,∠HGF=∠BGF,∵∠AGC=∠HGC,∴∠CGF=90°=∠GEH=∠GFH,∴四边形GEHF是矩形,∴GF=,∴∴BH=2BF=.故答案为:,.【点睛】此题考查了翻折的性质,勾股定理的应用,等腰三角形三线合一的性质,矩形的判定定理及性质定理,直角三角形斜边中线的性质,熟记各知识点并应用是解题的关键.5、【解析】【分析】本题首先经过分析可得,由全等三角形的性质和边角关系可得为等腰直角三角形,进而为等腰直角三角形,由勾股定理及等腰直角三角形的性质即可求解.【详解】如图,作,连接,在正方形ABCD中,,在和中,,,,,,在四边形ABGF中,,又,,,,,为等腰直角三角形,,为等腰直角三角形,,,,,故答案为:.【点睛】本题考查了正方形的性质,三角形全等,等腰直角三角形的判定,勾股定理,直角三角形中锐角三角函数,题目综合性强,理清思路,准确作出辅助线是解题的关键.6、

【解析】【分析】先计算出的立方根,再根据平方根的定义进行求解;根据绝对值的定义进行求解.【详解】解:①,的平方根是,的平方根是;②的绝对值是.故答案为:;.【点睛】本题了平方根和绝对值和立方根,理解平方根和绝对值的定义是解答关键.正数的平方根有两个,它们互为相反数,负数的绝对值是正数.7、【解析】【分析】根据一次函数的增减性列出不等式求解即可.【详解】解:∵当x1<x2时,y1<y2.∴y随x的增大而增大,∴k-1>0解得k>1.故答案为:k>1【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.三、解答题1、【解析】【分析】按照二次根式的化简方法,零指数法则,绝对值的意义,负指数幂的法则进行化简后即可得到答案.【详解】解:【点睛】本题考查了幂的运算法则、绝对值的化简、二次根式的化简等内容,关键是熟练掌握各种运算的方法.2、(1)BE=AD,BE⊥AD;理由见解析(2)BE=AD,BE⊥AD仍然成立;证明见解析【解析】【分析】(1)延长BE,交AD于点F,证明△BCE≌△ACD,得到∠EBC+∠ADC=90°,从而得到∠BFD=90°即可得证.(2)仿照(1)的思路,证明△ACD≌△BCE,得到∠AFG+∠CAD=90°,从而得证∠AGF=90°.(1)BE=AD,BE⊥AD;理由:在△BCE和△ACD中,,∴△BCE≌△ACD(SAS),∴BE=AD,∠BEC=∠ADC,∵∠EBC+∠BEC=90°,∴∠EBC+∠ADC=90°,延长BE,交AD于点F,∴∠BFD=90°,∴BE⊥AD.(2)BE=AD,BE⊥AD仍然成立;理由:设BE与AC的交点为点F,BE与AD的交点为点G,如图,∵∠ACB=∠ECD=90°,∴∠ACD=∠BCE.在△ACD和△BCE中,,∴△ACD≌△BCE(SAS).∴AD=BE,∠CAD=∠CBE.∵∠BFC=∠AFG,∠BFC+∠CBE=90°,∴∠AFG+∠CAD=90°.∴∠AGF=90°.∴BE⊥AD.【点睛】本题考查了直角三角形的全等证明和性质,运用两角互余证明垂直,旋转的性质,熟练掌握全等三角形的判定,灵活运用互余关系是解题的关键.3、【解析】【分析】根据算术平方根与立方根的性质和幂的乘方进行计算即可.【详解】解:原式=25×-×4+3=-3+3=.【点睛】本题主要考查了算术平方根的性质、立方根的性质和幂的乘方运算.4、(1)①见解析;②是,25(2)【解析】【分析】(1)①利用等腰三角形的三线合一的性质证明即可;②结论:四边形CEDF的面积为定值.证明△ADE≌△CDF(ASA),可得结论;(2)当t≥10时,点E在AC的延长线上.过点D分别作DG⊥BC,DH⊥AC,垂足分别为点G,H.证明△DBF≌△DCE(ASA),推出BF=CE=t﹣10,CF=CB+BF=10+(t﹣10)=t.再根据S△DEF=S四边形DCEF﹣S△DCE,求解即可.(1)证明:(1)①∵AC=BC,点D为AB的中点,∴CD⊥AB,∵DF⊥DE,∴∠ADE+∠CDE=∠CDF+∠CDE=90°,∴∠ADE=∠CDF;②结论:四边形CEDF的面积为定值,理由如下:∵AC=BC,点D为AB的中点,∠ACB=90°,∴∠A=∠B=∠ACD=∠BCD=45°,,∴AD=BD=CD,∵∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四边形CEDF=S△CDE+S△CDF=S△CDE+S△ADE=S△ACD=.∴四边形CEDF的面积为定值.(2)解:当t≥10时,点E在AC的延长线上.过点D分别作DG⊥BC,DH⊥AC,垂足分别为点G,H.∵∠FDC=∠FDE+∠CDE=∠BDC+∠BDF,∴∠BDF=∠CDE.由②得:AD=BD=CD,∠ABC=∠ACD=45°,∴∠DBF=∠DCE=135°,∴△DBF≌△DCE(ASA),∴BF=CE=t﹣10,∴CF=CB+BF=10+(t﹣10)=t.∵,DG⊥BC,DH⊥AC,∴,∵AD=BD=CD,AC=BC=10,∴DG=DH=5.∵=,∴.【点睛】本题主要考查了等腰三角形的判定和性质,角平分线的性质定理,直角三角形的性质,全等三角形的判定和性质,熟练

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论