难点解析四川成都市华西中学7年级数学下册第六章 概率初步章节练习试题(含解析)_第1页
难点解析四川成都市华西中学7年级数学下册第六章 概率初步章节练习试题(含解析)_第2页
难点解析四川成都市华西中学7年级数学下册第六章 概率初步章节练习试题(含解析)_第3页
难点解析四川成都市华西中学7年级数学下册第六章 概率初步章节练习试题(含解析)_第4页
难点解析四川成都市华西中学7年级数学下册第六章 概率初步章节练习试题(含解析)_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川成都市华西中学7年级数学下册第六章概率初步章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、一个不透明口袋中装着只有颜色不同的1个红球和2个白球,搅匀后从中摸出一个球,摸到红球的概率为().A.

B.

C.

D.12、下列说法中正确的是()A.一组数据2、3、3、5、5、6,这组数据的众数是3B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是0.1C.为了解长沙市区全年水质情况,适合采用全面调查D.画出一个三角形,其内角和是180°为必然事件3、如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.4、下列说法中错误的是()A.抛掷一枚质地均匀的硬币,落地后“正面朝上”和“反面朝上”是等可能的B.甲、乙两地之间质地均匀的电缆有一处断点,断点出现在电缆的各个位置是等可能的C.抛掷一枚质地均匀的骰子,“朝上一面的点数是奇数”和“朝上一面的点数是偶数”是等可能的D.一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,“摸到白球”和“摸到红球”是等可能的5、袋中装有10个黑球、5个红球,1个白球,它们除颜色外无差别,随机从袋子中摸出一球,则下列事件可能性最大的是()A.摸到黄球 B.摸到白球 C.摸到红球 D.摸到黑球6、下列语句中,表示不可能事件的是()A.绳锯木断 B.杀鸡取卵 C.钻木取火 D.水中捞月7、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是()A. B. C. D.8、标标抛掷一枚点数从1-6的正方体骰子12次,有7次6点朝上.当他抛第13次时,6点朝上的概率为()A. B. C. D.9、抛掷一枚质地均匀的硬币2021次,正面朝上最有可能接近的次数为()A.800 B.1000 C.1200 D.140010、下列事件中是必然事件的是()A.小菊上学一定乘坐公共汽车B.某种彩票中奖率为1%,买10000张该种票一定会中奖C.一年中,大、小月份数刚好一样多D.将豆油滴入水中,豆油会浮在水面上第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、某商场开展购物抽奖活动,抽奖箱内有标号分别为1、2、3、4、5、6、7、8、9、10十个质地、大小相同的小球,顾客从中任意摸出一个球,摸出的球的标号是3的倍数就得奖,顾客得奖概率是______.2、从﹣1,0,2和3中随机地选一个数,则选到正数的概率是_____.3、小明制作了张卡片,上面分别写了一个条件:①;②;③;④;⑤.从中随机抽取一张卡片,能判定是菱形的概率是________.4、一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,则两次摸出的球恰好是一个红球一个绿球的概率是____________.5、从如图所示的四张扑克牌中任取一张,牌面数字是3的倍数的概率是______.6、口袋中有4个黑球、2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别.在看不到球的条件下,随机从袋子中摸出1球,摸出黑球的概率为_______.7、从,,0,﹣2,π,这五个数中随机抽取一个数,恰好是无理数的概率是__.8、不透明的袋子里装有除颜色外完全相同的m个白色乒乓球和15个黄色乒乓球,若随机的从袋子中摸出一个乒乓球是白色的概率为,则袋子中总共有___________个乒乓球.9、“任意买一张电影票,座位号是2的倍数”,此事件是______事件.(填“确定”或“不确定”).10、在一个不透明的笔袋中装有两支黑色笔和一支红色笔,除颜色不同外其他都相同,随机从中摸出一支黑色笔的概率是___________.三、解答题(6小题,每小题10分,共计60分)1、一个不透明的口袋中有12个红球和若干个白球,在不允许将球倒出来数的前提下,小明采用如下的方法估算其中白球的个数:从口袋中随机摸出一个球,记下颜色,然后把它放回口袋中,摇匀后再随机摸出一个球,记下颜色……小明重复上述过程100次,其中60次摸到白球,请回答:(1)口袋中的白球约有多少个?(2)有一个游乐场,要按照上述红球、白球的比例配置彩球池若彩球池里共有3000个球,则需准备多少个红球?2、一个不透明的箱子里装有红、黄、蓝三种颜色的小球共30个,它们除颜色外其他均相同,其中红色球有6个、黄色球的数量是蓝色球数量的2倍.(1)求摸出1个球是蓝色球的概率;(2)再往箱子中放入多少个蓝色球,可以使摸出1个蓝色球的概率为?3、动物学家通过大量的调查估计:某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,活到30岁的概率为0.3.(1)现年20岁的这种动物活到25岁的概率为多少?(2)现年25岁的这种动物活到30岁的概率为多少?4、如图是芳芳自己设计的可以自由转动的转盘,转盘被等分成12个扇形,上面有12个有理数.求转出的数是:(1)正数的概率;(2)负数的概率;(3)绝对值小于6的数的概率;(4)相反数大于或等于8的数的概率.5、为庆祝中国共产党成立100周年,某校举行党史知识竞赛活动,赛后随机抽取了部分学生的成绩,按得分划分为A,B,C,D[A等级(0≤x≤100),B等级(80≤x<90),C等级(70≤x<80),D等级(x<70)]四个等级,并绘制了如下不完整的统计表和统计图.根据图表信息,回答下列问题:(1)表中a=;扇形统计图中,C等级所占的百分比是;D等级对应的扇形圆心角为度;若全校共有1800名学生参加了此次知识竞赛活动,请估计成绩为A等级的学生共有人.(2)若95分以上的学生有4人,其中甲、乙两人来自同一班级,学校将从这4人中随机选出两人参加市级比赛,请用列表或树状图法求甲、乙两人至少有1人被选中的概率.6、境外许多国家的疫情尚在继续蔓延,疫情防控不可松懈.如图是某国截止5月31日新冠病毒感染人数的扇形统计图和折线统计图.根据图表信息,回答下列问题.(1)截止5月31日该国新冠肺炎感染总人数累计为万人,扇形统计图中40﹣59岁感染人数对应圆心角的度数为°.(2)请直接在图中补充完整该国新冠肺炎感染人数的折线统计图.(3)在该国所有新冠肺炎感染病例中随机地抽取1人,求该患者年龄为60岁或60岁以上的概率.-参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.本题球的总数为1+2=3,红球的数目为1.【详解】解:根据题意可得:一个不透明口袋中装着只有颜色不同的1个红球和2个白球,共3个,任意摸出1个,摸到红球的概率是:1÷3=.故选:C.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.2、D【分析】根据统计调查、事件的发生可能性与概率的求解方法即可依次判断.【详解】A.一组数据2、3、3、5、5、6,这组数据的众数是3和5,故错误;B.袋中有10个蓝球,1个绿球,随机摸出一个球是绿球的概率是,故错误;C.为了解长沙市区全年水质情况,适合采用抽样调查,故错误;D.画出一个三角形,其内角和是180°为必然事件,正确;故选D.【点睛】此题主要考查统计调查、概率相关知识,解题的关键是熟知概率公式的求解.3、B【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案.【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).4、D【分析】根据随机事件发生的可能性结合概率公式分别对每一项进行分析,即可得出答案.【详解】解:A、抛掷一枚质地均匀的硬币,落地后“正面朝上”和“反面朝上”的概率是相等的,是等可能的,正确,不符合题意;B、甲、乙两地之间质地均匀的电缆有一处断点,断点出现在电缆的各个位置上的概率相同,是等可能的,正确,不符合题意;C、抛掷一枚质地均匀的骰子,“朝上一面的点数是奇数”和“朝上一面的点数是偶数”的概率是相等的,是等可能的,正确,不符合题意;D、一只不透明的袋子中装有2个白球和1个红球,这些球除颜色外都相同,搅匀后从中任意摸出1个球,“摸到白球”的概率大于“摸到红球”的概率,故本选项错误,符合题意;故选:D.【点睛】本题考查的是随机事件发生的可能性的大小,概率的含义,掌握“等可能事件的理解”是解题的关键.5、D【分析】个数最多的就是可能性最大的.【详解】解:因为黑球最多,所以被摸到的可能性最大.故选:D.【点睛】本题主要考查可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等.6、D【分析】根据不可能事件的定义:在一定条件下,一定不会发生的事件,进行逐一判断即可.【详解】解:∵不可能事件是在一定条件下,一定不会发生,而A中的绳锯木断,B中的杀鸡取卵,C中的钻木取火都是可以发生,只有D水中捞月是不可能发生的,∴只有D选项是不可能事件,故选D.【点睛】本题主要考查了不可能事件,解题的关键在于能够熟知不可能事件的定义.7、C【分析】用3的倍数的个数除以数的总数即为所求的概率.【详解】解:∵1到10的数字中是3的倍数的有3,6,9共3个,∴卡片上的数字是3的倍数的概率是.故选:C.【点睛】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.8、D【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:掷一颗均匀的骰子(正方体,各面标这6个数字),一共有6种等可能的情况,其中6点朝上只有一种情况,所以6点朝上的概率为.故选:D.【点睛】本题考查概率的求法与运用,解题的关键是掌握一般方法:如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).9、B【分析】由抛掷一枚硬币正面向上的可能性约为求解可得.【详解】解:抛掷一枚质地均匀的硬币次,正面朝上的次数最有可能为次,故选B.【点睛】本题主要考查了事件的可能性,解题的关键在于能够理解抛掷一枚硬币正面向上的可能性约为.10、D【分析】必然事件就是一定发生的事件,根据定义即可解答.【详解】解:A、小菊上学乘坐公共汽车是随机事件,不符合题意;B、买10000张一定会中奖也是随机事件,尽管中奖率是1%,不符合题意;C、一年中大月份有7个,小月份有5个,不相等,是不可能事件,不符合题意;D、常温下油的密度<水的密度,所以油一定浮在水面上,是必然事件,符合题意.故选:D.【点睛】用到的知识点为:必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.二、填空题1、【分析】结合题意,首先分析3的倍数的数量,再根据概率公式的性质计算,即可得到答案.【详解】根据题意,3的倍数有:3,6,9,共3个数∴摸出的球的标号是3的倍数的概率是:,即顾客得奖概率是:故答案为:.【点睛】本题考查了概率的知识;解题的关键是熟练掌握概率公式,从而完成求解.2、【分析】根据概率公式直接求解即可.【详解】解:∵﹣1,0,2和3中有2个正数,∴选到正数的概率=,故答案是:.故答案是:.【点睛】本题主要考查等可能事件的概率,熟练掌握概率公式是解题的关键.3、【分析】根据菱形的判定定理判断哪个条件合适,然后根据概率公式计算.【详解】根据菱形的判断,可得①;④能判定平行四边形ABCD是菱形,∴能判定是菱形的概率是,故答案为:.【点睛】本题考查了菱形的判定,概率的计算,熟练掌握概率计算公式是解题的关键.4、【分析】根据题意画出树状图,再计算概率即可.【详解】画树状图如图:共用9种等可能结果数,两次摸出的球恰好是一个红球一个绿球的结果有4个,∴两次摸出的球恰好是一个红球一个绿球的概率是.故答案为:.【点睛】本题考查简单事件的概率,画出事件的树状图是解题关键.5、【分析】根据概率公式直接计算即可解答.【详解】解:从中随机抽出一张牌,牌面所有可能出现的结果由4种,且它们出现的可能性相等,其中出现3的倍数的情况有1种,∴P(牌面是3的倍数)=故答案为:【点睛】此题考查了概率公式的运用,解题的关键是确定整个事件所有可能的结果,难度不大.6、【分析】直接利用概率公式求解即可求得答案.【详解】解:∵一个不透明的袋子中只装有4个黑球,2个白球,这些球的形状、大小、质地等完全相同,即除颜色外无其他差别,∴随机从袋中摸出1个球,则摸出黑球的概率是:.故答案为:.【点睛】本题考查了概率公式的应用.用到的知识点为:概率=所求情况数与总情况数之比.7、【分析】直接利用概率公式计算得出答案.【详解】解:从,0,﹣2,π这五个数中随机抽取一个数,抽到的无理数的有,π这2种可能,∴抽到的无理数的概率是,故答案为:.【点睛】本题主要考查概率的计算,解决本题的关键是要熟练掌握概率计算方法.8、18【分析】由从袋子中摸出一个乒乓球是白球的概率计算出从袋子中摸出一个乒乓球是黄色的概率,再根据白球的个数以及从袋子中摸出一个乒乓球是白球的概率即可求出乒乓球的总个数.【详解】解:∵从袋子中摸出一个乒乓球是白色的概率为,∴从袋子中摸出一个乒乓球是黄色的概率为,∴袋子中乒乓球的总数为:(个),故答案为:18.【点睛】本题主要考查由概率求数量,解题关键是熟练掌握概率公式以及公式的变形.9、不确定【分析】根据确定事件和随机事件的定义来区分判断即可,必然事件和不可能事件统称确定性事件.随机事件:在一定条件下,可能发生也可能不发生的事件称为随机事件.【详解】根据题意,座位号可能是奇数可能是偶数,所以此事件是随机事件,即不确定事件.故答案为:不确定.【点睛】本题考查了确定事件和随机事件,理解定义是解题的关键.10、【分析】让黑色笔的支数除以所有笔的支数总和即可求得概率.【详解】解:∵有两支黑色笔和一支红色笔,∴随机从中摸出一支黑色笔的概率是:.故答案为:.【点睛】此题主要考查概率的意义及求法,熟练掌握概率等于所求情况数与总情况数之比是解题的关键.三、解答题1、(1)18个;(2)1200个【分析】(1)设白球的个数为x个,根据概率公式列出分式方程,故可求解;(2)根据红球的占比即可求解.【详解】解:(1)设白球的个数为x个,根据题意得:,解得:x=18,经检验,符合题意,∴小明可估计口袋中的白球的个数是18个.(2)3000×=1200,即需准备1200个红球.【点睛】此题主要考查概率公式的运用,解题的关键是根据题意列出方程求解.2、(1);(2)14【分析】(1)首先求得蓝色球的个数,然后利用概率公式求解即可;(2)设再往箱子里放入个蓝色球,可以使摸出1个蓝色球的概率为,根据题意得,求出的值即可.【详解】解:(1)蓝色球有:(个),所以P(摸出1个球是蓝色球);(2)设再往箱子中放入x个蓝色球,可以使摸出1个蓝色球的概率为,则,解得,,答:再往箱子中放入14个蓝色球,可以使摸出1个蓝色球的概率为.【点睛】此题考查概率的求法:如果一个事件有种可能,而且这些事件的可能性相同,其中时间出现种可能,那么事件的概率.3、(1)现年20岁的这种动物活到25岁的概率为0.625;(2)现年25岁的这种动物活到30岁的概率为0.6.【分析】设这种动物有x只,根据概率的定义,用活到25岁的只数除以活到20岁的只数可得到现年20岁的这种动物活到25岁的概率;用活到30岁的只数除以活到25岁的只数可得到现年25岁的这种动物活到30岁的概率【详解】解:设这种动物有x只,则活到20岁的只数为0.8x,活到25岁的只数为0.5x,活到30岁的只数为0.3x.(1)现年20岁的这种动物活到25岁的概率为=0.625.(2)现年25岁的这种动物活到30岁的概率为=0.6.【点睛】本题考查了概率的计算,正确理解概率的含义是解决本题的关键.概率等于所求情况数与总情况数之比.4、(1);(2);(3);(4)【分析】根据题意找出符合条件的数,再利用概率公式分别计算其概率即可.【详解】解:(1)10个数中正数有1,6,8,9,,,P(正数)=.(2)10个数中正数有-1,,-10,-2,-8,P(负数)=.(3)10个数中绝对值小于6的数有-1,,0,,1,-2,,P(绝对值小于6的数)=.(4)相反数大于或等于8的数有-10,-8,P(相反数大于或等于8的数)=.【点睛】本题考查的是概率的公式:,n表示该试验中所有可能出现的基本结果的总数目.m表示事件A包含的试验基本结果数.5、(1)20,30%,42,450;(2)【分析】(1)由A等级的人数和所对应的圆心角的度数求出抽取的学生人数,即可解决问题;(2

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论