版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、把6张大小、厚度、颜色相同的卡片上分别画上线段、等边三角形、正方形、长方形、圆、抛物线.在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是()A. B. C. D.2、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于()A. B. C. D.3、如图,ABCD是正方形,△CDE绕点C逆时针方向旋转90°后能与△CBF重合,那么△CEF是()A..等腰三角形 B.等边三角形C..直角三角形 D..等腰直角三角形4、如图,A,B,C是正方形网格中的三个格点,则是()A.优弧 B.劣弧 C.半圆 D.无法判断5、下列事件为随机事件的是()A.四个人分成三组,恰有一组有两个人 B.购买一张福利彩票,恰好中奖C.在一个只装有白球的盒子里摸出了红球 D.掷一次骰子,向上一面的点数小于76、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()A.平移 B.翻折 C.旋转 D.以上三种都不对7、如图,△ABC外接于⊙O,∠A=30°,BC=3,则⊙O的半径长为()A.3 B. C. D.8、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、为了落实“双减”政策,朝阳区一些学校在课后服务时段开设了与冬奥会项目冰壶有关的选修课.如图,在冰壶比赛场地的一端画有一些同心圆作为营垒,其中有两个圆的半径分别约为60cm和180cm,小明掷出一球恰好沿着小圆的切线滑行出界,则该球在大圆内滑行的路径MN的长度为______cm.2、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.3、将点绕x轴上的点G顺时针旋转90°后得到点,当点恰好落在以坐标原点O为圆心,2为半径的圆上时,点G的坐标为________.4、如图,在矩形中,,,F为中点,P是线段上一点,设,连结并将它绕点P顺时针旋转90°得到线段,连结、,则在点P从点B向点C的运动过程中,有下面四个结论:①当时,;②点E到边的距离为m;③直线一定经过点;④的最小值为.其中结论正确的是______.(填序号即可)5、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.6、在平面直角坐标系中,点关于原点对称的点的坐标是______.7、一个五边形共有__________条对角线.三、解答题(7小题,每小题0分,共计0分)1、如图,已知AB是⊙O的直径,,连接OC,弦,直线CD交BA的延长线于点.(1)求证:直线CD是⊙O的切线;(2)若,,求OC的长.2、已知线段AB,用平移、旋转、轴对称画出一个以AB为一边,一个内角是30°的菱形.(不写画法,保留作图痕迹).3、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.4、如图,在中,,,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F.(1)求的度数;(2)若,且,求DF的长.5、一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称:;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.6、作图题(1)由大小相同的小立方块搭成的几何体如下图,请在右图的方格中画出该几何体的俯视图和左视图.(2)用小立方体搭一几何体,使得它的俯视图和左视图与你在上图方格中所画的图一致,则这样的几何体最少要个小立方块,最多要个小立方块.7、随着科技的发展,沟通方式越来越丰富.一天,甲、乙两位同学同步从“微信”“QQ”,“电话”三种沟通方式中任意选一种与同学联系.(1)用恰当的方法列举出甲、乙两位同学选择沟通方式的所有可能;(2)求甲、乙两位同学恰好选择同一种沟通方式的概率.-参考答案-一、单选题1、D【分析】根据题意,判断出中心对称图形的个数,进而即可求得答案【详解】解:∵线段、等边三角形、正方形、长方形、圆、抛物线中,中心对称图形有:线段、正方形、长方形、圆,共4种,总数为6种∴在看不见图形的条件下任意摸出1张,这张卡片上的图形是中心对称图形的概率是故选D【点睛】本题考查了概率公式求概率,中心对称图形,掌握线段、等边三角形、正方形、长方形、圆、抛物线的性质是解题的关键.2、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点D是AB的中点,,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.3、D【分析】根据旋转的性质推出相等的边CE=CF,旋转角推出∠ECF=90°,即可得到△CEF为等腰直角三角形.【详解】解:∵△CDE绕点C逆时针方向旋转90°后能与△CBF重合,∴∠ECF=90°,CE=CF,∴△CEF是等腰直角三角形,故选:D.【点睛】本题主要考查旋转的性质,掌握图形旋转前后的大小和形状不变是解决问题的关键.4、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.5、B【分析】根据事件发生的可能性大小判断.【详解】解:A、四个人分成三组,恰有一组有两个人,是必然事件,不合题意;B、购买一张福利彩票,恰好中奖,是随机事件,符合题意;C、在一个只装有白球的盒子里摸出了红球,是不可能事件,不合题意;D、掷一次骰子,向上一面的点数小于7,是必然事件,不合题意;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.7、A【分析】分析:连接OA、OB,根据圆周角定理,易知∠AOB=60°;因此△ABO是等边三角形,即可求出⊙O的半径.【详解】解:连接BO,并延长交⊙O于D,连结DC,∵∠A=30°,∴∠D=∠A=30°,∵BD为直径,∴∠BCD=90°,在Rt△BCD中,BC=3,∠D=30°,∴BD=2BC=6,∴OB=3.故选A.【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30°角所对直角三角形性质是解题的关键.8、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.二、填空题1、【分析】如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,根据切线的性质定理和垂径定理求解即可.【详解】解:如图,设小圆的切线MN与小圆相切于点D,与大圆交于M、N,连接OD、OM,则OD⊥MN,∴MD=DN,在Rt△ODM中,OM=180cm,OD=60cm,∴cm,∴cm,即该球在大圆内滑行的路径MN的长度为cm,故答案为:.【点睛】本题考查切线的性质定理、垂径定理、勾股定理,熟练掌握切线的性质和垂径定理是解答的关键.2、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.3、或【分析】设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,由全等三角形求出点坐标,由点在2为半径的圆上,根据勾股定理即可求出点G的坐标.【详解】设点G的坐标为,过点A作轴交于点M,过点作轴交于点N,如图所示:∵,∴,,∵点A绕点G顺时针旋转90°后得到点,∴,,∴,∵轴,轴,∴,∴,∴,在与中,,∴,∴,,∴,∴,在中,由勾股定理得:,解得:或,∴或.故答案为:,.【点睛】本题考查旋转的性质、全等三角形的判定与性质以及勾股定理,掌握相关知识之间的应用是解题的关键.4、②③④【分析】①当在点的右边时,得出即可判断;②证明出即可判断;③根据为等腰直角三角形,得出都是等腰直角三角形,得到即可判断;④当时,有最小值,计算即可.【详解】解:,为等腰直角三角形,,当在点的左边时,,当在点的右边时,,故①错误;过点作,在和中,根据旋转的性质得:,,,,,故②正确;由①中得知为等腰直角三角形,,也是等腰直角三角形,过点,不管P在上怎么运动,得到都是等腰直角三角形,,即直线一定经过点,故③正确;是等腰直角三角形,当时,有最小值,,为等腰直角三角形,,,由勾股定理:,,故④正确;故答案是:②③④.【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.5、##【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解:把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.6、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.7、5【分析】由n边形的对角线有:条,再把代入计算即可得.【详解】解:边形共有条对角线,五边形共有条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.三、解答题1、(1)见解析;(2)【分析】(1)连接OD,由AD∥OC及OD=OA,即可得到∠COB=∠DOC,从而可证得△OBC≌△ODC,即可证得CD是⊙O的切线;(2)由AD∥OC可得△EAD∽△EOC,可得,再由△OBC≌△ODC得BC=CD,从而可得,则可求得OC的长.【详解】(1)连接OD,∵,∴.又∵,∴,∴.在与中,∴,∴.又∵,∴,∴是的切线.(2)∵,∴,∴,∴.又∵,∴,∴,∴,∴,∴,∴OC=15【点睛】本题是圆的综合,它考查了切线的判定,三角形全等的判定与性质,相似三角形的判定与性质等知识;证明圆的切线时,往往作半径.2、见解析【分析】把线段AB绕点A逆时针旋转30°得到线段AD,作直线BD,以直线BD为对称轴,分别作AB、AD的轴对称图形,即可得到所求的菱形ABCD.【详解】解:如图所示:菱形ABCD即为所求.【点睛】本题主要考查了菱形的性质、旋转的性质、轴对称的性质等知识点,理解菱形的性质是解答本题的关键.3、边长为,边心距为【分析】过点O作OE⊥BC,垂足为E,利用圆内接四边形的性质求出∠BOC=90°,∠OBC=45°,然后在Rt△OBE中,根据勾股定理求出OE、BE即可.【详解】解:过点O作OE⊥BC,垂足为E,∵正方形ABCD是半径为R的⊙O内接四边形,R=6,∴∠BOC==90°,∠OBC=45°,OB=OC=6,∴BE=OE.在Rt△OBE中,∠BEO=90°,由勾股定理可得∵OE2+BE2=OB2,∴OE2+BE2=36,∴OE=BE=,∴BC=2BE=,即半径为6的圆内接正方形ABCD的边长为,边心距为.【点睛】本题考查了圆内接四边形的性质,以及勾股定理,正多边形各边所对的外接圆的圆心角都相等,正多边形每一边所对的外接圆的圆心角叫做正多边形的中心角,正n边形每个中心角都等于.4、(1)45°;(2)【分析】(1)根据旋转的性质得,,,,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得.【详解】解:(1)由旋转可知:,,,,∴,,.由三角形内角和定理得,∴点A,D,F,E共圆.∴.(2)连接EB,∵,∴.∵,∴.又∵,,∴.∴,.∴.在中,,,,∵,∴.【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质.5、(1)长方体或四棱柱(2)66cm2【分析】(1)这个立方体的三视图都是长方形所以这个几何体应该是长方体;(2)长方体一共有6个面,算长方体的表面积应该把这6个面的面积相加即可.(1)∵这个立方体的三视图都是长方形,∴这个立方体是长方体或四棱柱.(2)由三视图知该长方体的表面积:(3)(3×4)×4+(3×3)×2=66(
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030智慧物流分拣系统行业市场深度分析及仓储管理优化与投资规划研究报告
- 2025-2030智慧物流仓储管理系统市场发展分析及行业发展趋势与投资前景研究报告
- 2025-2030智慧消防行业市场深度调研及发展前景与投资前景研究报告
- 2025-2030智慧水务行业市场供需软件系统化管理与规划
- 扬州市人民医院鞘内药物输注系统考核
- 南通市中医院口腔X线片判读能力考核
- 芜湖市中医院影像质控标准考核
- 宜春市中医院科室发展战略规划能力考核
- 大兴安岭人民医院科室业务学习考核
- 陕西省西安市2023-2024学年八年级上学期数学期中试题(含答案)
- 2025年新版中国移动笔试题库及答案
- 2025年湖北省生态环保有限公司招聘33人笔试参考题库附带答案详解
- 2025年中国出版集团有限公司校园招聘笔试参考题库附带答案详解
- 集装箱驾驶员管理制度
- 第八章健美操健美操组合动作教学设计人教版初中体育与健康八年级全一册
- 4.11五四运动课件-统编版八年级历史上册
- 肿瘤患者中心静脉血管通路装置相关皮肤损伤临床护理实践指南 2
- 医疗安全培训课件妇科
- 脐带血栓课件
- 山东初级注安师考试题库及答案
- 【《某66kV模式半高型变电站设计的环境因素及负荷统计计算案例》2500字】
评论
0/150
提交评论