




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》定向测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为()A. B. C. D.2、如图,菱形ABCD的边长为6cm,∠BAD=60°,将该菱形沿AC方向平移2cm得到四边形A′B′C′D′,A′D′交CD于点E,则点E到AC的距离为()A.1 B. C..2 D.23、在△ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若△ABD、△EFC的面积分别为21、7,则的值为()A. B. C. D.4、如图,正方形ABCO和正方形DEFO的顶点A、E、O在同一直线上,且EF=,AB=3,给出下列结论:①∠COD=45°;②AE=3+;③CF=AD=;④S△COF+S△EOF=.期中正确的个数为()A.1个 B.2个 C.3个 D.4个5、平行四边形中,,则的度数是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、能使平行四边形ABCD为正方形的条件是___________(填上一个符合题目要求的条件即可).2、如图,每个小正方形的边长都为1,△ABC是格点三角形,点D为AC的中点,则线段BD的长为_____.3、如图,在矩形ABCD中,对角线AC,BD相交于O,EF过点O分别交AB,CD于E,F,已知AB=8cm,AD=5cm,那么图中阴影部分面积为_____cm2.4、如图,在平面直角坐标系中,O是菱形ABCD对角线BD的中点,AD∥x轴,AD=4,∠A=60°.将菱形ABCD绕点O旋转,使点D落在x轴上,则旋转后点C的对应点的坐标是_____________.5、如图,在菱形纸片ABCD中,AB=2,∠A=60°,将菱形纸片翻折,使点A落在CD的中点E处,折痕为FG,点F,G分别在边AB,AD上,则cos∠EFG的值为________.三、解答题(5小题,每小题10分,共计50分)1、(3)点P为AC上一动点,则PE+PF最小值为.2、如图所示,在边长为1的菱形ABCD中,∠DAB=60°,M是AD上不同于A,D两点的一动点,N是CD上一动点,且AM+CN=1.(1)证明:无论M,N怎样移动,△BMN总是等边三角形;(2)求△BMN面积的最小值.3、如图,在中,对角线AC、BD交于点O,AB=10,AD=8,AC⊥BC,求(1)的面积;(2)△AOD的周长.
4、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形.(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(3)在图3中,画一个正方形,使它的面积是10.5、如图,已知在Rt△ABC中,∠ACB=90°,CD是斜边AB上的中线,点E是边BC延长线上一点,连接AE、DE,过点C作CF⊥DE于点F,且DF=EF.(1)求证:AD=CE.(2)若CD=5,AC=6,求△AEB的面积.-参考答案-一、单选题1、B【解析】【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积.【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2.∵一个直角三角形的周长为3+,∴AB+BC=3+-2=1+.等式两边平方得(AB+BC)2=(1+)2,即AB2+BC2+2AB•BC=4+2,∵AB2+BC2=AC2=4,∴2AB•BC=2,AB•BC=,即三角形的面积为×AB•BC=.故选:B.【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出AC•BC的值是解此题的关键,值得学习应用.2、C【解析】【分析】根据题意连接BD,过点E作EF⊥AC于点F,根据菱形的性质可以证明三角形ABD是等边三角形,根据平移的性质可得AD∥A′E,可得,,进而求出A′E,再利用30度角所对直角边等于斜边的一半即可得出结论.【详解】解:如图,连接BD,过点E作EF⊥AC于点F,∵四边形ABCD是菱形,∴AD=AB,BD⊥AC,∵∠BAD=60°,∴三角形ABD是等边三角形,∵菱形ABCD的边长为6cm,∴AD=AB=BD=6cm,∴AG=GC=3(cm),∴AC=6(cm),∵AA′=2(cm),∴A′C=4(cm),∵AD∥A′E,∴,∴,∴A′E=4(cm),∵∠EA′F=∠DAC=∠DAB=30°,∴EF=A′E=2(cm).故选:C.【点睛】本题考查菱形的性质以及等边三角形的判定与性质和平移的性质,解决本题的关键是掌握菱形的性质.3、B【解析】【分析】过点A作△ABC的高,设为x,过点E作△EFC的高为,可求出,,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解.【详解】解:过点A作△ABC的高,设为x,过点E作△EFC的高为,∴,∴,,∵点E、F分别是线段AC、CD的中点,∴,∴,∵,∴,∴,过点D作DM⊥AB,DN⊥AC,∵AD为平分线,∴DM=DN,∵,∴,即:∴,故选:B.【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出.4、B【解析】【分析】根据∠COD=180°﹣∠AOC﹣∠DOE得到∠COD=45°,根据已知条件求出OE=2,得到AE=AO+OE=2+3=5,作DH⊥AB于H,作FG⊥CO交CO的延长线于G,根据勾股定理即可得到BD,根据三角形面积的关系计算即可;【详解】①∵∠AOC=90°,∠DOE=45°,∴∠COD=180°﹣∠AOC﹣∠DOE=45°,故①正确;②∵EF,∴OE=2,∵AO=AB=3,∴AE=AO+OE=2+3=5,故②错误;③作DH⊥AB于H,作FG⊥CO交CO的延长线于G,则FG=1,CF,BH=3﹣1=2,DH=3+1=4,BD,故③错误;④△COF的面积S△COF3×1,△EOF的面积S△EOF=()2=1S△COF+S△EOF=故④正确;正确的是①④;故选:B.【点睛】本题主要考查了正方形的性质,勾股定理,准确计算是解题的关键.5、B【解析】【分析】根据平行四边形对角相等,即可求出的度数.【详解】解:如图所示,∵四边形是平行四边形,∴,∴,∴.故:B.【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质.二、填空题1、AC=BD且AC⊥BD(答案不唯一)【解析】【分析】根据正方形的判定定理,即可求解.【详解】解:当AC=BD时,平行四边形ABCD为菱形,又由AC⊥BD,可得菱形ABCD为正方形,所以当AC=BD且AC⊥BD时,平行四边形ABCD为正方形.故答案为:AC=BD且AC⊥BD(答案不唯一)【点睛】本题主要考查了正方形的判定,熟练掌握正方形的判定定理是解题的关键.2、##【解析】【分析】根据勾股定理列式求出AB、BC、AC,再利用勾股定理逆定理判断出△ABC是直角三角形,然后根据直角三角形斜边上的中线等于斜边的一半解答即可.【详解】解:,,,,∴∠ABC=90°,∵点D为AC的中点,∴BD为AC边上的中线,∴BD=AC,故答案为:【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,勾股定理逆定理的应用,判断出△ABC是直角三角形是解题的关键.3、10【解析】【分析】利用矩形性质,求证,将阴影部分的面积转为的面积,最后利用中线平分三角形的面积,求出的面积,即可得到阴影部分的面积.【详解】解:四边形为矩形,,,,,在与中,,阴影部分的面积最后转化为了的面积,中,,平分,阴影部分的面积:,故答案为:10.【点睛】本题主要是考查了矩形的性质以全等三角形的判定与性质以及中线平分三角形面积,熟练利用矩形性质,证明三角形全等,将阴影部分面积转化为其他图形的面积,这是解决本题的关键.4、或##或【解析】【分析】分当D落在x轴正半轴时和当D落在x轴负半轴时,两种情况讨论求解即可.【详解】解:如图1所示,当D落在x轴正半轴时,∵O是菱形ABCD对角线BD的中点,∴AO⊥DO,∴当D落在x轴正半轴时,A点在y轴正半轴,∴同理可得A、B、C三点均在坐标轴上,且点C在y轴负半轴,∵∠BAD=60°,∴∠OAD=30°,∴,∴,∴点C的坐标为(0,);如图2所示,当D落在x轴负半轴时,同理可得,∴点C的坐标为(0,);∴综上所述,点C的坐标为(0,)或(0,),故答案为:(0,)或(0,).【点睛】本题主要考查了菱形的性质,坐标与图形,含30度角的直角三角形的性质,勾股定理,熟练掌握菱形的性质是解题的关键.5、【解析】【分析】根据题意连接BE,连接AE交FG于O,如图,利用菱形的性质得△BDC为等边三角形,∠ADC=120°,再在在Rt△BCE中计算出BE=CE=,然后证明BE⊥AB,利用勾股定理计算出AE,从而得到OA的长;设AF=x,根据折叠的性质得到FE=FA=x,在Rt△BEF中利用勾股定理得到(2-x)2+()2=x2,解得x,然后在Rt△AOF中利用勾股定理计算出OF,再利用余弦的定义求解即可.【详解】解:连接BE,连接AE交FG于O,如图,∵四边形ABCD为菱形,∠A=60°,∴△BDC为等边三角形,∠ADC=120°,∵E点为CD的中点,∴CE=DE=1,BE⊥CD,在Rt△BCE中,BE=CE=,∵AB∥CD,∴BE⊥AB,∴.∴,设AF=x,∵菱形纸片翻折,使点A落在CD的中点E处,∴FE=FA=x,∴BF=2-x,在Rt△BEF中,(2-x)2+()2=x2,解得:,在Rt△AOF中,,∴.故答案为:.【点睛】本题考查了折叠的性质以及菱形的性质,注意掌握折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.三、解答题1、【分析】(1)根据折叠的性质可得:∠1=∠2,再由矩形的性质,可得∠2=∠3,从而得到∠1=∠3,即可求解;(2)设FD=x,则AF=CF=8-x,再由勾股定理,可得DF=3,从而得到CF=5,即可求解;(3)连接PB,根据折叠的性质可得△ECP≌△BCP,从而得到PE=PB,进而得到当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,再由勾股定理,即可求解.【详解】(1)解:△ACF是等腰三角形,理由如下:如图,由折叠可知,∠1=∠2,∵四边形ABCD是矩形,∴AB∥CD,∴∠2=∠3,∴∠1=∠3,∴AF=CF,∴△ACF是等腰三角形;(2)∵四边形ABCD是矩形且AB=8,BC=4,∴AD=BC=4,CD=AB=8,∠D=90°,设FD=x,则AF=CF=8-x,在Rt△AFD中,根据勾股定理得AD2+DF2=AF2,∴42+x2=(8-x)2,解得x=3,即DF=3,∴CF=8-3=5,∴;(3)如图,连接PB,根据折叠得:CE=CB,∠ECP=∠BCP,∵CP=CP,∴△ECP≌△BCP,∴PE=PB,∴PE+PF=PE+PB,∴当点F、P、B三点共线时,PE+PF最小,最小值为BF的长,由(2)知:CF=5,∵BC=4,∠BCF=90°,∴,即PE+PF最小值为.【点睛】本题主要考查了矩形与折叠问题,等腰三角形的判定,熟练掌握矩形和折叠的性质是解题的关键.2、(1)见解析;(2)△BMN面积的最小值为【分析】(1)连接BD,证明△AMB≌△DNB,则可得BM=BN,∠MBA=∠NBD,由菱形的性质易得∠MBN=60゜,从而可证得结论成立;(2)过点B作BE⊥MN于点E.【详解】(1)证明:如图所示,连接BD,在菱形ABCD中,∠DAB=60°,∴∠ADB=∠NDB=60°,故△ADB是等边三角形,∴AB=BD,又AM+CN=1,DN+CN=1,∴AM=DN,在△AMB和△DNB中,,∴△AMB≌△DNB(SAS),∴BM=BN,∠MBA=∠NBD,又∠MBA+∠DBM=60°,∴∠NBD+∠DBM=60°,即∠MBN=60°,∴△BMN是等边三角形;(2)过点B作BE⊥MN于点E.设BM=BN=MN=x,则,故,∴当BM⊥AD时,x最小,此时,,.∴△BMN面积的最小值为.【点睛】本题考查了菱形的性质,等边三角形的判定与性质,垂线段最短,全等三角形的判定与性质等知识,关键是作辅助线证三角形全等.3、(1)48(2)【分析】(1)利用勾股定理先求出高AC,故可求解面积;(2)根据平行四边形的性质求出AO,再利用勾股定理求出OB的长,故可求解.【详解】解:(1)∵四边形ABCD是平行四边形,且AD=8
∴BC=AD=8∵AC⊥BC∴∠ACB=90°在Rt△ABC中,由勾股定理得AC2=AB2-BC2∴∴(2)∵四边形ABCD是平行四边形,且AC=6∴∵∠ACB=90°,BC=8∴,∴∴.【点睛】此题主要考查平行四边形的性质,解题的关键是熟知平行四边形的性质及勾股定理的应用.4、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB=4,BC=3,,利用勾股
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年放射影像技术放射科学原理试题答案及解析
- 2025年全科医生临床技能评估模拟试卷答案及解析
- 2025年老年医学老年痴呆护理技巧综合考核试卷答案及解析
- 2025年临床药理学药物不良反应识别评测答案及解析
- 2025年心血管内科心脏超声影像识别模拟试卷答案及解析
- 2025年江西省全省中小学教师及特岗教师招聘笔试萍乡考区模拟试卷及一套完整答案详解
- 2025年全科医生全科疾病的综合诊疗技巧模拟考试卷答案及解析
- 2025年麻醉药物应用与剂量计算试卷答案及解析
- 2025广东韶关市新丰县文广旅体局招聘社会购买服务人员1人模拟试卷附答案详解
- 2025广东技术师范大学招聘辅导员40人考前自测高频考点模拟试题附答案详解(考试直接用)
- 小儿腹股沟疝麻醉
- 宜宾党校考试试题及答案
- 2025年安徽省农业职业技能大赛(水生物病害防治员)备赛试题库(含答案)
- DB31T 444-2022 排水管道电视和声呐检测评估技术规程
- 演出冠名赞助合同协议
- (新版)智能楼宇管理员考试题库及答案
- 门窗安装工程培训课件
- 2025-2030中国完全同态加密行业市场发展趋势与前景展望战略研究报告
- 公司与劳务派遣公司合同范本
- 濒危野生动植物种国际贸易公约(附录一二三)
- 狭义相对论课件
评论
0/150
提交评论