考点解析四川绵阳南山双语学校7年级数学下册第六章 概率初步定向训练试题(含答案解析版)_第1页
考点解析四川绵阳南山双语学校7年级数学下册第六章 概率初步定向训练试题(含答案解析版)_第2页
考点解析四川绵阳南山双语学校7年级数学下册第六章 概率初步定向训练试题(含答案解析版)_第3页
考点解析四川绵阳南山双语学校7年级数学下册第六章 概率初步定向训练试题(含答案解析版)_第4页
考点解析四川绵阳南山双语学校7年级数学下册第六章 概率初步定向训练试题(含答案解析版)_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川绵阳南山双语学校7年级数学下册第六章概率初步定向训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,正方形网格中,黑色部分的图形构成一个轴对称图形,现在任意选取一个白色的小正方形并涂黑,使黑色部分的图形仍然构成一个轴对称图形的概率是()A. B. C. D.2、在相同条件下,移植10000棵幼苗,有8000棵幼苗成活,估计在相同条件下移植一棵这种幼苗成活的概率为()A.0.1 B.0.2 C.0.9 D.0.83、下列事件为必然事件的是()A.明天是晴天 B.任意掷一枚均匀的硬币100次,正面朝上的次数是50次C.两个正数的和为正数 D.一个三角形三个内角和小于4、下列事件为必然事件的是()A.打开电视,正在播放广告B.抛掷一枚硬币,正面向上C.挪一枚质地均匀的般子,向上一面的点数为7D.实心铁块放入水中会下沉5、下列事件是必然事件的是()A.任意选择某电视频道,它正在播新闻联播B.温州今年元旦当天的最高气温为15℃C.在装有白色和黑色的袋中摸球,摸出红球D.不在同一直线上的三点确定一个圆6、书架上放着两本散文和一本数学书,小明从中随机抽取一本,抽到数学书的概率是()A.1 B. C. D.7、已知粉笔盒里有8支红色粉笔和n支白色粉笔,每支粉笔除颜色外均相同,现从中任取一支粉笔,取出红色粉笔的概率是,则n的值是()A.10 B.12 C.13 D.148、从一副完整的扑克牌中任意抽取1张,下列事件与抽到“A”的概率相同的是()A.抽到“大王” B.抽到“红桃” C.抽到“小王” D.抽到“K”9、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为().A. B. C. D.10、一个袋子中放有4个红球和6个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、在一只不透明的口袋中放入只有颜色不同的白球7个,黑球5个,黄球个,搅匀后随机从中摸取一个恰好是黄球的概率为,则放入的黄球总数__________.2、班会课上,小强与班上其他32名同学每人制作了一张贺卡放在一个盒子里,小强从盒子中任意地取一张.恰好抽到自己制作的那张贺卡的可能性为__________.3、不透明的袋子中有5张卡片,上面分别写着数字1,2,3,4,5,除数字外五张卡片无其它差别,从袋子中随机摸出一张卡片,其数字为偶数的概率是_______.4、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10%,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”______张.5、在一个不透明的袋子中装有个红球和个白球,每个球除颜色外都相同,任意摸出一个球,则摸出白球的概率是________.6、某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启秒后,紧接着绿灯开启秒,再紧接着黄灯开启秒,按此规律循环下去.如果不考虑其他因素,当一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是______.7、一个不透明的口袋中,装有黑球5个,红球6个,白球7个,这些球除颜色不同外,没有任何区别,现从中任意摸出一个球,恰好是红球的概率为________.8、某家庭电话,打进的电话响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,则电话在响第五声之前被接的概率为___________.9、某校初三(2)班想举办班徽设计比赛,全班50名同学,计划每位同学交设计方案一份,拟评选出10份为一等奖,那么该班某位同学获一等奖的概率为______________.10、抛掷一枚质地均匀硬币,第一次正面朝上,第二次也是正面朝上,问第三次是正面朝上的可能性为__________.三、解答题(6小题,每小题10分,共计60分)1、已知一个纸箱中装有除颜色外完全相同的红球、黄球、黑球共80个,从中任意摸出一个球,摸到红球、黄球的概率分别为0.2和0.3.(1)求黑球的数量;(2)若从纸箱中取走若干个黑球,并放入相同数量的红球,要使从纸箱中任意摸出一个球是红球的概率为,求放入红球的数量.2、某校数学兴趣小组成员小华对本班上学期末考试数学成绩(成绩取整数,满分为100分)作了统计分析,绘制成频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:分组49.5~59.559.5~69.569.5~79.579.5~89.589.5~100.5合计频数22016450频率0.040.160.40.321(1)频数、频率分布表中______,______;(2)补全频数分布直方图;(3)数学老师准备从不低于90分的学生中选1人介绍学习经验,那么取得了93分的小华被选上的概率是______.3、某社区准备开展消防安全知识宣传活动,需确定两名宣传员.现有四张完全相同的卡片,上面分别标有两名女工作人员的代码,和两名男工作人员的代码,.把卡片背面朝上洗匀,从中随机抽取两张,请用列表或画树状图的方法求卡片上的代码恰代表一男一女的概率.4、从长为2cm,3cm,4cm,5cm的4条线段中随机取出3条线段,问随机取出的3条线段能围成一个三角形的概率是多少?5、在每个事件的括号里填上“必然”、“随机”、“不可能”等词语.①如果,那么.()②如果,那么,.()③一只袋里有5个红球,1个白球,从袋里任取一球是红色的.()④掷骰子游戏中,连续掷十次,掷得的点数全是6.()6、某商店实行有奖销售,印有1万张奖券,其中有10张一等奖,50张二等奖,500张三等奖,其余均无奖,任意抽取一张,(1)获得一等奖的概率有多大?(2)获奖的概率有多大?(3)如果使得获三等奖的概率为,那么需要将多少无奖券改为三等奖券-参考答案-一、单选题1、B【分析】根据题意,涂黑一个格共6种等可能情况,结合轴对称的意义,可得到轴对称图形的情况数目,结合概率的计算公式,计算可得答案.【详解】解:如图所示:根据题意,涂黑每一个格都会出现一种等可能情况,共出现6种等可能情况,只有4种是轴对称图形,分别标有1,2,3,4;使黑色部分的图形仍然构成一个轴对称图形的概率是:.故选:B.【点睛】本题考查几何概率的求法,解题的关键是掌握如果一个事件有种可能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A).2、D【分析】利用成活的树的数量÷总数即可得解.【详解】解:8000÷10000=0.8,故选:D.【点睛】此题主要考查了概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.3、C【详解】解:A、“明天是晴天”是随机事件,此项不符题意;B、“任意掷一枚均匀的硬币100次,正面朝上的次数是50次”是随机事件,此项不符题意;C、“两个正数的和为正数”是必然事件,此项符合题意;D、“一个三角形三个内角和小于”是不可能事件,此项不符题意;故选:C.【点睛】本题考查了随机事件、必然事件和不可能事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)、必然事件的定义(发生的可能性为1的事件称为必然事件)和不可能事件的定义(发生的可能性为0的事件称为不可能事件)是解题关键.4、D【分析】根据必然事件的定义:在一定条件下,一定会发生的事件,进行逐一判断即可.【详解】解:A、打开电视,可以正在播放广告,也可以不在播放广告,不是必然事件,不符合题意;B、抛掷一枚硬币,正面可以向上,反面也可以向上,不是必然事件,不符合题意;C、挪一枚质地均匀的般子,向上一面的点数为7,这是不可能发生的,不是必然事件,不符合题意;D、实心铁块放入水中会下沉,这是一定会发生的,是必然事件,符合题意;故选D.【点睛】本题主要考查必然事件,熟知必然事件的定义是解题的关键.5、D【分析】由题意依据必然事件指在一定条件下一定发生的事件逐项进行判断即可.【详解】解:A.任意选择某电视频道,它正在播新闻联播,是随机事件,选项不符合;B.温州今年元旦当天的最高气温为15℃,是随机事件,选项不符合;C.在装有白色和黑色的袋中摸球,摸出红球,是不可能事件,选项不符合;D.不在同一直线上的三点确定一个圆,是必然事件,选项符合.故选:D.【点睛】本题考查确定事件和不确定事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、D【分析】根据概率公式求解即可.【详解】∵书架上放着两本散文和一本数学书,小明从中随机抽取一本,∴.故选:D.【点睛】本题考查随机事件的概率,某事件发生的概率等于某事件发生的结果数与总结果数之比,掌握概率公式的运用是解题的关键.7、B【分析】根据概率求解公式列方程计算即可;【详解】由题意得:,解得:n=12.经检验:n=12是方程的解.故选B.【点睛】本题主要考查了概率公式的应用,准确计算是解题的关键.8、D【分析】抽到“A”的概率为,只要计算四个选项中的概率,即可得到答案.【详解】抽到“A”的概率为,而抽到“大王”与抽到“小王”的概率均为,抽到“红桃”的概率为,抽到“K”的概率为,即抽到“K”的概率与抽到“A”的概率相等.故选:D【点睛】本题考查了简单事件的概率,根据概率计算公式,要知道所有可能结果数,及事件发生的结果数,即可求得事件的概率.9、B【分析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算.【详解】解:依题意得P(朝上一面的数字是偶数).故选B.【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解.10、C【分析】根据随机事件概率大小的求法,找准两点:①符合条件的情况数目;②全部情况的总数.二者的比值就是其发生的概率的大小.【详解】解:∵袋子里装有10个球,4个红球,6个白球,∴摸出红球的概率:.故选:C.【点睛】本题主要考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.二、填空题1、6【分析】利用概率公式,将黄球个数除以所有球总个数即可得出随机从中摸取一个恰好是黄球的概率.【详解】解:由题可知:,解得:,经检验,符合题意;故答案为:6.【点睛】本题考查了随机事件的概率,解题的关键是牢记概率公式,正确列出方程并求解.2、【分析】根据题意,共有1+32=33个学生,由概率=所求情况数与总情况数之比即可得出答案.【详解】解:根据题意得:;答:正好抽到自己那一张的可能性为;故答案为:.【点睛】本题考查的是概率的公式,用到的知识点为:概率=所求情况数与总情况数之比.3、【分析】根据等可能事件的概率公式,直接求解即可.【详解】解:∵一共有5个数字,偶数有2个,∴从袋子中随机摸出一张卡片,其数字为偶数的概率是=2÷5=,故答案是:.【点睛】本题主要考查等可能事件的概率,掌握概率公式,是解题的关键.4、260【分析】先求出一等奖的概率,然后利用频数=总数×概率求解即可.【详解】解:由题意得:一等奖的概率=,∴盒子中有“谢谢惠顾”张,故答案为:260.【点睛】本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数×概率.5、【分析】根据白球的个数÷总个数即可得解;【详解】根据题意可得:摸出白球的概率;故答案是:.【点睛】本题主要考查了概率公式算概率,准确分析计算是解题的关键.6、【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】红灯亮秒,绿灯亮秒,黄灯亮秒,,故答案为:.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率.7、【分析】直接利用概率公式计算即可.【详解】共有球个,其中红球有6个,∴从中任意摸出一个球,恰好是红球的概率是.故答案为:.【点睛】本题考查简单的概率计算.掌握概率公式是解答本题的关键.8、0.8【分析】依题意电话在响第五声之前被接的概率等于打进的电话响第一声时被接的概率+响第二声被接的概率+响第三声和第四声被接的概率,计算得出结果.【详解】打进的电话响第一声时被接的概率为0.1,响第二声被接的概率为0.2,响第三声或第四声被接的概率都是0.25,电话在响第五声之前被接的概率为.故答案为:0.8.【点睛】本题考查了概率的应用,掌握概率的定义是解题的关键.9、【分析】由题意,用一等奖的份数除以全班学生数即为所求的概率.【详解】解:根据题意分析可得:共50分设计方案,拟评选出10份为一等奖,那么该班某同学获一等奖的概率为:.故答案为:.【点睛】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.10、##【分析】根据概率的意义直接回答即可.【详解】解:∵每次抛掷硬币正面朝上的概率均为,且三次抛掷相互不受影响,∴抛掷一枚质地均匀的硬币,若第一次是正面朝上,第二次也是正面朝上,则第三次正面朝上的概率为,故答案为:.【点睛】此题考查了概率公式,用到的知识点为:概率=所求情况数与总情况数之比.三、解答题1、(1)40;(2)24.【分析】(1)用所有的球减去红球和黄球的数量即可得出答案;(2)设放进个红球,根据摸出红球的概率为列出方程,解方程即可得出答案.【详解】解:(1)(个)故答案为:40.(2)设放进个红球由题意得解得:∴放进24个红球.故答案为24.【点睛】本题考查的概率,找到相应的关系式是解决本题的关键,用到的知识点为:概率=所求情况数与总情况数之比.2、(1),;(2)补全频数分布直方图见解析;(3).【分析】(1)利用频数=频率×总数可得的值,利用频率=频数÷总数可得的值;(2)由(1)的结论中,补全频数分布直方图;(3)根据频率分布表可得信息90分以上的同学有4人,根据概率的公式即可得答案;【详解】(1);故答案为:,;(2)由(1),补全频数分布直方图如图:(3)根据频率分布表可得信息90分以上的同学有4人,小华被选上的概率是.故答案为:.【点睛】本题考查了频数分布表和频数分布直方图的综合,概率的简单计算,解答此类题目,要善于发现二者之间的关联点,用频数分布表中某部分的频数除以它的频率求出样本容量,进而求解其它未知的量.3、(一男一女)【分析】根据题意画出树状图得出所有等情况数,找出符合条件的情况数,然后根据概率公式即可得出答案.【详解】解:画树状图如下:所有可能出现的结果有个,且每个结果发生的可能性都相等,其中一男一女的结果有个.∴(一男一女).【点睛】此题考查的是用树状图法求概率.树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.4、【分析】先利用列举法求出所有4种可能的结果数,再分别根

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论