




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()A. B. C. D.2、如图,在中,,,若以点为圆心,的长为半径的圆恰好经过的中点,则的长等于()A. B. C. D.3、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()A.60 B.90 C.120 D.1804、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是()A.2cm B.2.4cm C.3cm D.3.5cm5、在平面直角坐标系中,已知点与点关于原点对称,则的值为()A.4 B.-4 C.-2 D.26、下列图形中,既是轴对称图形又是中心对称图形的是()A. B. C. D.7、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()A.平移 B.翻折 C.旋转 D.以上三种都不对8、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是().A.90° B.100° C.120° D.150°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)2、如图,在⊙O中,∠BOC=80°,则∠A=___________°.3、圆锥的底面直径是80cm,母线长90cm.它的侧面展开图的圆心角和圆锥的全面积依次是______.4、如图,正三角形ABC的边长为,D、E、F分别为BC,CA,AB的中点,以A,B,C三点为圆心,长为半径作圆,图中阴影部分面积为______.5、在平面直角坐标系中,点,圆C与x轴相切于点A,过A作一条直线与圆交于A,B两点,AB中点为M,则OM的最大值为______.6、在菱形ABCD中,AB=6,E为AB的中点,连结AC,DE交于点F,连结BF.记∠ABC=α(0°<α<180°).(1)当α=60°时,则AF的长是_____;(2)当α在变化过程中,BF的取值范围是_____.7、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.三、解答题(7小题,每小题0分,共计0分)1、电影《长津湖》以抗美援朝战争第二次战役中的长津湖战役为背景,讲述71年前,中国人民志愿军赴朝作战,在极寒严酷环境下,东线作战部队凭着钢铁意志和英勇无畏的战斗精神一路追击,奋勇杀敌的真实历史.为纪念历史,缅怀先烈,我校团委将电影中的四位历史英雄人物头像制成编号为A、B、C、D的四张卡片(除编号和头像外其余完全相同),活动时学生根据所抽取的卡片来讲述他们在影片中波澜壮阔、可歌可泣的历史事迹.规则如下:先将四张卡片背面朝上,洗匀放好,小强从中随机抽取一张,然后放回并洗匀,小叶再从中随机抽取一张.请用列表或画树状图的方法求小强和小叶抽到的两张卡片恰好是同一英雄人物的概率.2、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.3、如图,以四边形的对角线为直径作圆,圆心为,点、在上,过点作的延长线于点,已知平分.(1)求证:是切线;(2)若,,求的半径和的长.4、将锐角为45°的直角三角板MPN的一个锐角顶点P与正方形ABCD的顶点A重合,正方形ABCD固定不动,然后将三角板绕着点A旋转,∠MPN的两边分别与正方形的边BC、DC或其所在直线相交于点E、F,连接EF.(1)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC相交时,如图1所示,请直接写出线段BE、DF、EF满足的数量关系;(2)在三角板旋转过程中,当∠MPN的两边分别与正方形的边CB、DC的延长线相交时,如图2所示,请直接写出线段BE、DF、EF满足的数量关系;(3)若正方形的边长为4,在三角板旋转过程中,当∠MPN的一边恰好经过BC边的中点时,试求线段EF的长.5、在中,,,点E在射线CB上运动.连接AE,将线段AE绕点E顺时针旋转90°得到EF,连接CF.(1)如图1,点E在点B的左侧运动.①当,时,则___________°;②猜想线段CA,CF与CE之间的数量关系为____________.(2)如图2,点E在线段CB上运动时,第(1)问中线段CA,CF与CE之间的数量关系是否仍然成立?如果成立,请说明理由;如果不成立,请求出它们之间新的数量关系.6、如图,在△ABC是⊙O的内接三角形,∠B=45°,连接OC,过点A作AD∥OC,交BC的延长线于D.(1)求证:AD是⊙O的切线;(2)若⊙O的半径为2,∠OCB=75°,求△ABC边AB的长.7、如图,是由一些大小相同的小正方体组合成的简单几同体,请在下面方格纸中分别画出从它的左面和上面看到的形状图.-参考答案-一、单选题1、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.2、D【分析】连接CD,由直角三角形斜边中线定理可得CD=BD,然后可得△CDB是等边三角形,则有BD=BC=5cm,进而根据勾股定理可求解.【详解】解:连接CD,如图所示:∵点D是AB的中点,,,∴,∵,∴,在Rt△ACB中,由勾股定理可得;故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.3、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是=120°.故选C.【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.4、B【分析】如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.【详解】解:如图所示,过C作CD⊥AB,交AB于点D,在Rt△ABC中,AC=3cm,BC=4cm,根据勾股定理得:AB==5(cm),∵S△ABC=BC•AC=AB•CD,∴×3×4=×10×CD,解得:CD=2.4,则r=2.4(cm).故选:B.【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.5、C【分析】根据关于原点对称的点的坐标特点:两个点关于原点对称时,它们的坐标符号相反即可得到答案.【详解】解:点与点关于原点对称,,,.故选:C.【点睛】此题主要考查了原点对称点的坐标特点,解题的关键是掌握点的变化规律.6、D【详解】解:.不是轴对称图形,也不是中心对称图形,故本选项不符合题意;.不是轴对称图形,是中心对称图形,故本选项不符合题意;.是轴对称图形,不是中心对称图形,故本选项不符合题意;.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.8、D【分析】将绕点逆时针旋转得,根据旋转的性质得,,,则为等边三角形,得到,,在中,,,,根据勾股定理的逆定理可得到为直角三角形,且,即可得到的度数.【详解】解:为等边三角形,,可将绕点逆时针旋转得,如图,连接,,,,为等边三角形,,,在中,,,,,为直角三角形,且,.故选:D.【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.二、填空题1、中心投影【分析】根据平行投影和中心投影的定义解答即可.【详解】解:“皮影戏”中的皮影是中心投影.故答案是中心投影.【点睛】本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影.2、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:与是同弧所对的圆心角与圆周角,,.故答案为:.【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.3、160°,5200【分析】由题意知,圆锥的展开图扇形的r半径为90cm,弧长l为.代入扇形弧长公式求解圆心角;代入扇形面积公式求出圆锥侧面积,然后加上底面面积即可求出全面积.【详解】解:圆锥的展开图扇形的r半径为90cm,弧长l为∵∴解得∵∴故答案为:160°,.【点睛】本题考查了扇形的圆心角与面积.解题的关键在于运用扇形的弧长与面积公式进行求解.难点在于求出公式中的未知量.4、【分析】阴影部分的面积等于等边三角形的面积减去三个扇形面积,而这三个扇形拼起来正好是一个半径为半圆的面积,即阴影部分面积=等边三角形面积−半径为半圆的面积,因此求出半圆面积,连接AD,则可求得AD的长,从而可求得等边三角形的面积,即可求得阴影部分的面积.【详解】连接AD,如图所示则AD⊥BC∵D点是BC的中点∴由勾股定理得∴∵S半圆=∴S阴影=S△ABC−S半圆故答案为:【点睛】本题是求组合图形的面积,扇形面积及三角形面积的计算.关键是把不规则图形面积通过割补转化为规则图形的面积计算.5、##【分析】如图所示,取D(-2,0),连接BD,连接CD与圆C交于点,先求出A点坐标,从而可证OM是△ABD的中位线,得到,则当BD最小时,OM也最小,即当B运动到时,BD有最小值,由此求解即可.【详解】解:如图所示,取D(-2,0),连接BD,连接CD与圆C交于点∵点C的坐标为(2,2),圆C与x轴相切于点A,∴点A的坐标为(2,0),∴OA=OD=2,即O是AD的中点,又∵M是AB的中点,∴OM是△ABD的中位线,∴,∴当BD最小时,OM也最小,∴当B运动到时,BD有最小值,∵C(2,2),D(-2,0),∴,∴,∴,故答案为:.【点睛】本题主要考查了坐标与图形,一点到圆上一点的距离得到最小值,两点距离公式,三角形中位线定理,把求出OM的最小值转换成求BD的最小值是解题的关键.6、2【分析】(1)证明是等边三角形,,进而即可求得;(2)过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,证明在半圆上,进而即可求得范围.【详解】(1)如图,四边形是菱形,是等边三角形是的中点即故答案为:2(2)如图,过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,四边形是菱形,在以为圆心长度为半径的圆上,又∠ABC=α(0°<α<180°)在半圆上,最小值为最大值为故答案为:【点睛】本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键.7、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.三、解答题1、【分析】根据题意列出树状图,根据概率公式即可求解.【详解】由题意做树状图如下:故小强和小叶抽到的两张卡片恰好是同一英雄人物的概率为.【点睛】此题考查了用列表法或树状图法求概率,解题时要注意此题是放回试验还是不放回试验,用到的知识点为:概率=所求情况数与总情况数之比.2、(1)见解析;(2)(3)【分析】(1)根据题意补全图形即可;(2)根据旋转的性质可得,,进而证明,可得,根据角度的转换可得,进而根据三角形的外角性质即可证明;(3)过点作,证明,进而根据勾股定理以及线段的转换即可得到(1)如图,(2)将线段AE绕点A逆时针旋转90°,得到线段AF,,,又即(3)证明如下,如图,过点作,又,又,即【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.3、(1)证明见解析(2)【分析】(1)连接OA,根据已知条件证明OA⊥AE即可解决问题;(2)取CD中点F,连接OF,根据垂径定理可得OF⊥CD,所以四边形AEFO是矩形,利用勾股定理即可求出结果.(1)证明:如图,连接OA,∵AE⊥CD,∴∠DAE+∠ADE=90°.∵DA平分∠BDE,∴∠ADE=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠DAE+∠OAD=90°,∴OA⊥AE,∴AE是⊙O切线;(2)解:如图,取CD中点F,连接OF,∴OF⊥CD于点F.∴四边形AEFO是矩形,∵CD=6,∴DF=FC=3.在Rt△OFD中,OF=AE=4,∴,在Rt△AED中,AE=4,ED=EF-DF=OA-DF=OD-DF=5-3=2,∴,∴AD的长是.【点睛】本题考查了切线的判定与性质,垂径定理,圆周角定理,勾股定理,解决本题的关键是掌握切线的判定与性质.4、(1)EF=DF+BE;(2)EF=DF-BE;(3)线段EF的长为或.【分析】(1)延长FD至G,使DG=BE,连接AG,先证△ABE≌△ADG,再证△GAF≌△EAF即可;(2)在DC上截取DH=BE,连接AH,先证△ADH≌△ABE,再证△HAF≌EAF即可;(3)分两种情形分别求解即可解决问题.【详解】解:(1)结论:EF=BE+DF.理由:延长FD至G,使DG=BE,连接AG,如图①,∵ABCD是正方形,∴AB=AD,∠ABE=ADG=∠DAB=90°,∴△ABE≌△ADG(AAS),∴AE=AG,∠DAG=∠EAB,∵∠EAF=45°,∴∠DAF+∠EAB=45°,∴∠DAF+∠DAG=45°,∴∠GAF=∠EAF=45°,∵AF=AF,∴△GAF≌△EAF(AAS),∴EF=GF,∴GF=DF+DG=DF+BE,即:EF=DF+BE;(2)结论:EF=DF-BE.理由:在DC上截取DH=BE,连接AH,如图②,∵AD=AB,∠ADH=∠ABE=90°,∴△ADH≌△ABE(SAS),∴AH=AE,∠DAH=∠EAB,∵∠EAF=∠EAB+∠BAF=45°,∴∠DAH+∠BAF=45°,∴∠HAF=45°=∠EAF,∵AF=AF,∴△HAF≌EAF(SAS),∴HF=EF,∵DF=DH+HF,∴EF=DF-BE;(3)①当MA经过BC的中点E时,同(1)作辅助线,如图:设FD=x,由(1)的结论得FG=EF=2+x,FC=4-x.在Rt△EFC中,(x+2)2=(4-x)2+22,∴x=,∴EF=x+2=.②当NA经过BC的中点G时,同(2)作辅助线,设BE=x,由(2)的结论得EC=4+x,EF=FH,∵K为BC边的中点,∴CK=BC=2,同理可证△ABK≌FCK(SAS),∴CF=AB=4,EF=FH=CF+CD-DH=8-x,在Rt△EFC中,由勾股定理得到:(4+x)2+42=(8-x)2,∴x=,∴EF=8-=.综上,线段EF的长为或.【点睛】本题属于四边形综合题,考查了正方形的性质,旋转变换,全等三角形的判定和性质,勾股定理等知识,解题的关键是学会利用旋转法添加辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题.5、(1)①;②(2)不成立,【分析】(1)①由直角三角形的性质可得出答案;②过点E作ME⊥EC交CA的延长线于M,由旋转的性质得出AE=EF,∠AEF=90°,得出∠AEM=∠CEF,证明△FEC≌△AEM(SAS),由全等三角形的性质得出CF=AM,由等腰直角三角形的性质可得出结论;(2)过点F作FH⊥BC交BC的延长线于点H.证明△ABE≌△EHF(AAS),由全等三角形的性质得出FH=BE,EH=AB=BC,由等腰直角三角形的性质可得出结论;(1)①∵,,,∴,∵sin∠EAB=∴,故答案为:30°;②.如图1,过点E作交CA的延长线于M,∵,,∴,∴,∴,∴,∵将线段AE绕点E顺时针旋转90°得到EF,∴,,∴,在△FEC和△AEM中,∴,∴,∴,∵为等腰直角三角形,∴,∴;故答案为:;(2)不成立.如图2,过点F作交BC的延长线于点H.∴,,∵,∴,在△FEC和△AEM中,∴,∴,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年外贸业务专员面试指南及模拟题答案详解
- 2025年地理信息系统应用实战教程高级版预测题集
- 2025年数据分析师中级考试模拟题及答案详解
- 2025年特岗教师招聘初中数学逻辑思维与解题能力测试题目集萃
- 2025年特岗教师招聘初中数学面试备考策略与经典模拟题解析
- 2025年特岗教师招聘笔试物理考试题型分析
- 2025年国家图书馆公务员招录笔试模拟题详解
- 2025年公务员职业道德教育课程资料与试题集答案解析
- 2025年房地产销售员招聘考试指南及题库
- 2025年智能包装项目申请报告模板
- 人教版高一下学期期末考试数学试卷与答案解析(共五套)
- SYT 5822-2021 油田化学剂分类及命名规范-PDF解密
- 人教版小学3-6年级英语单词表,已A4排版,可直接打印
- 制造业班组长培训
- 创作属于自己的国画作品
- 烟草行业基础知识培训课件
- 《花生膜下滴灌技术》课件
- 2024年江苏高科技投资集团有限公司招聘笔试参考题库含答案解析
- 办公室文员员工职责
- 完整版江苏省政府采购专家库入库考试题库(1-4套卷)
- 样品不合格分析及改良流程图
评论
0/150
提交评论