难点解析-京改版数学9年级上册期末试卷带答案详解(典型题)_第1页
难点解析-京改版数学9年级上册期末试卷带答案详解(典型题)_第2页
难点解析-京改版数学9年级上册期末试卷带答案详解(典型题)_第3页
难点解析-京改版数学9年级上册期末试卷带答案详解(典型题)_第4页
难点解析-京改版数学9年级上册期末试卷带答案详解(典型题)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

京改版数学9年级上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、已知(a≠0,b≠0),下列变形正确的是()A. B. C.2a=3b D.3a=2b2、如图所示,某校数学兴趣小组利用标杆测量建筑物的高度,已知标杆高,测得,,则建筑物的高是()A. B. C. D.3、如图,在△ABC中,点G为△ABC的重心,过点G作DE∥BC,分别交AB、AC于点D、E,则△ADE与四边形DBCE的面积比为()A. B. C. D.4、关于的方程有两个不相等的实根、,若,则的最大值是(

)A.1 B. C. D.25、已知点都在反比例函数的图象上,且,则下列结论一定正确的是(

)A. B. C. D.6、为了美观,在加工太阳镜时将下半部分轮廓制作成抛物线的形状(如图所示),对应的两条抛物线关于轴对称,轴,,最低点在轴上,高,,则右轮廓所在抛物线的解析式为(

)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、二次函数(a,b,c是常数,)的自变量x与函数值y的部分对应值如下表:x…-2-1012……tm22n…已知.则下列结论中,正确的是(

)A. B.和是方程的两个根C. D.(s取任意实数)2、如图,在⊙O中,AB是⊙O的直径,点D是⊙O上一点,点C是弧AD的中点,弦CE⊥AB于点F,过点D的切线交EC的延长线于点G,连接AD,分别交CF、BC于点P、Q,连接AC.则下列结论中正确的是()A.∠BAD=∠ABC B.GP=GD C.点P是△ACQ的外心 D.AP•AD=CQ•CB3、利用反例可以判断一个命题是错误的,下列命题错误的是(

)A.若,则 B.对角线相等的四边形是矩形C.函数的图象是中心对称图形 D.六边形的外角和大于五边形的外角和4、已知四条线段a,b,c,d是成比例线段,即,下列说法正确的是(

)A.ad=bc B. C. D.5、如图,已知等边三角形ABC的边长为2,DE是它的中位线.则下面四个结论中正确的有()A.DE=1 B.AB边上的高为C.△CDE∽△CAB D.△CDE的面积与△CAB面积之比为1:46、已知函数y=的图象如图,以下结论:其中正确的有(

)A.m<0B.在每个分支上y随x的增大而增大C.若点A(﹣1,a)、点B(2,b)在图象上,则a<bD.若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上7、下列关于圆的叙述正确的有()A.对角互补的四边形是圆内接四边形B.圆的切线垂直于圆的半径C.正多边形中心角的度数等于这个正多边形一个外角的度数D.过圆外一点所画的圆的两条切线长相等第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、已知关于的一元二次方程,有下列结论:①当时,方程有两个不相等的实根;②当时,方程不可能有两个异号的实根;③当时,方程的两个实根不可能都小于1;④当时,方程的两个实根一个大于3,另一个小于3.以上4个结论中,正确的个数为_________.2、举出一个生活中应用反比例函数的例子:______.3、如图,有长为24米的篱笆,一面利用墙(墙的最大可用长度为10米),围成中间隔有一道篱笆的长方形花圃.设花圃的宽AB为x米,面积为S平方米.则S与x的函数关系式是____________,自变量x的取值范围是____________.4、二次函数y=ax2+bx+c图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是_____.5、比较大小:____(填“”“”或“>”)6、已知二次函数,当分别取时,函数值相等,则当取时,函数值为______.7、如图,在平面直角坐标系中,一条过原点的直线与反比例函数的图象x相交于两点,若,,则该反比例函数的表达式为______.四、解答题(6小题,每小题10分,共计60分)1、如图,在△ABC中,AB=AC,AE⊥AB于A,∠BAC=120°,AE=3cm.求BC的长.2、已知,且,求x,y的值.3、如图,AB是⊙O的直径,弦CD⊥AB于点E,点P⊙O上,∠1=∠C.(1)求证:CB∥PD;(2)若∠ABC=55°,求∠P的度数.4、计算:(1)(2)5、二次函数与轴分别交于点和点,与轴交于点,直线的解析式为,轴交直线于点.(1)求二次函数的解析式;(2)为线段上一动点,过点且垂直于轴的直线与抛物线及直线分别交于点、.直线与直线交于点,当时,求值.6、某宾馆共有80间客房.宾馆负责人根据经验作出预测:今年5月份,每天的房间空闲数y(间)与定价x(元/间)之间满足y=x﹣42(x≥168).若宾馆每天的日常运营成本为4000元,有客人入住的房间,宾馆每天每间另外还需支出36元的各种费用,宾馆想要获得最大利润,同时也想让客人得到实惠.(1)求入住房间z(间)与定价x(元/间)之间关系式;(2)应将房间定价确定为多少元时,获得利润最大?求出最大利润?-参考答案-一、单选题1、C【解析】【分析】根据比例的性质“两内项之积等于两外项之积”对各选项分析判断即可得.【详解】解:A、∵,∴,∴,选项说法错误,不符合题意;B、∵,∴,∴,选项说法错误,不符合题意;C、∵,∴,选项说法正确,符合题意;D、∵,∴,选项说法错误,不符合题意;故选C.【考点】本题考查了比例的性质,解题的关键是熟记比例的性质.2、A【解析】【分析】先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.【详解】解:∵,∴AC=1.2m+12.8m=14m∵标杆和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴,即,解得CD=17.5m.故答案为A.【考点】本题考查了相似三角形的应用,正确判定相似三角形并利用相似三角形的性质列方程计算是解答本题的关键.3、A【解析】【分析】连接AG并延长交BC于H,如图,利用三角形重心的性质得到AG=2GH,再证明△ADE∽△ABC,根据相似三角形的性质得到==,然后根据比例的性质得到△ADE与四边形DBCE的面积比.【详解】解:连接AG并延长交BC于H,如图,∵点G为△ABC的重心,∴AG=2GH,∴=,∵DE∥BC,∴△ADE∽△ABC,∴==()2=,∴△ADE与四边形DBCE的面积比=.故选:A.【考点】本题考查了三角形的重心与相似三角形的性质与判定.重心到顶点的距离与重心到对边中点的距离之比为2∶1.4、D【解析】【分析】根据一元二次方程根与系数的关系,求得两根之和和两根之积,再根据两根关系,求得系数的关系,代入代数式,配方法化简求值即可.【详解】解:由方程有两个不相等的实根、可得,,,∵,可得,,即化简得则故最大值为故选D【考点】此题考查了一元二次方程根与系数的关系,涉及了配方法求解代数式的最大值,根据一元二次方程根与系数的关系得到系数的关系是解题的关键.5、C【解析】【分析】根据反比例函数的性质,可得答案.【详解】反比例函数中,=-2020<0,图象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故选:C.【考点】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.6、B【解析】【分析】利用B、D关于y轴对称,CH=1cm,BD=2cm可得到D点坐标为(1,1),由AB=4cm,最低点C在x轴上,则AB关于直线CH对称,可得到左边抛物线的顶点C的坐标为(-3,0),于是得到右边抛物线的顶点C的坐标为(3,0),然后设顶点式利用待定系数法求抛物线的解析式.【详解】∵高CH=1cm,BD=2cm,且B、D关于y轴对称,∴D点坐标为(1,1),∵AB∥x轴,AB=4cm,最低点C在x轴上,∴AB关于直线CH对称,∴左边抛物线的顶点C的坐标为(-3,0),∴右边抛物线的顶点F的坐标为(3,0),设右边抛物线的解析式为y=a(x-3)2,把D(1,1)代入得1=a×(1-3)2,解得a=,∴右边抛物线的解析式为y=(x-3)2,故选:B.【考点】本题考查了二次函数的应用:利用实际问题中的数量关系与直角坐标系中线段对应起来,再确定某些点的坐标,然后利用待定系数法确定抛物线的解析式,再利用抛物线的性质解决问题.二、多选题1、BC【解析】【分析】由表中数据,结合二次函数的对称性,可知,二次函数的对称轴为,结合抛物线对称轴为:,得出,由,,结合二次函数图象性质,逐一分析各个选项,即可作出相应的判断.【详解】解:由表格数据可知,当时,,将点代入中,可得.由表格数据可知,当时,;当时,;即抛物线对称轴为:,∵抛物线对称轴为:,∴,化简得,.∵,,∴抛物线解析式化为,.将点代入中,化简得,,∵,∴,解得.∵,∴.∵,,,∴,故A选项说法错误,不符合题意;∵二次函数对称轴为,∴和时,对应的函数值相等,∵时,对应函数值为,∴和是方程的两个根,故B选项说法正确,符合题意;由表中数据可知,二次函数过点和,将点和分别代入二次函数解析式中,可得,,,故,C选项说法正确,符合题意;∵,∴,∵,∴,即,∵,∴,s取任意实数,故D选项说法错误,不符合题意;故选:BC.【考点】本题考查了二次函数的图象性质,二次函数与一元二次方程的关系,深入理解函数概念,熟练掌握二次函数图象性质是解题的关键.2、BCD【解析】【分析】A错误,假设成立,推出矛盾即可;B正确.想办法证明即可;C正确.想办法证明即可;D正确.证明,可得,证明,可得,证明,可得,由此即可解决问题;【详解】解:A错误,假设,则,,,显然不可能,故A错误.B正确.连接.是切线,,,,,,,,,故B正确.C正确.,,,,,,是直径,,,,,,,点是的外心.故C正确.D正确.连接.,,,,,,,,可得,,,,可得,.故D正确,故选:BCD.【考点】本题考查相似三角形的判定和性质、垂径定理、圆周角定理、切线的性质等知识,解题的关键是正确现在在相似三角形解决问题,属于中考选择题中的压轴题.3、ABD【解析】【分析】根据有理数的乘法、矩形的判定定理、反比例函数的性质、多边形的外角性质逐一判断即可.【详解】解:A、当b=0,a≠0时,则,该选项符合题意;B、如图:四边形ABCD的对角线AC=BD,但四边形ABCD不是矩形,该选项符合题意;C、函数的图象是中心对称图形,该选项不符合题意;D、多边形的外角和都相等,等于360°,该选项符合题意;故选:ABD.【考点】本题考查了命题与定理的知识,解题的关键是了解判断一个命题是假命题的时候可以举出反例.4、ABD【解析】【分析】根据比例的性质将原式变形,分别进行判断即可,进而得出答案.【详解】解:∵四条线段a,b,c,d是成比例线段,即,∴A.利用内项之积等于外项之积,ad=bc,故选项正确,B.利用内项之积等于外项之积,a(b+d)=b(a+c),ab+ad=ab+bc,即ad=bc,故选项正确,C.∵,∴,故选项错误,D.∵∴,故选项正确,故选:ABD.【考点】此题主要考查了比例的性质,将比例式灵活正确变形得出是解题关键.5、ABCD【解析】【分析】根据图形,利用三角形中位线定理,可得DE=1,A成立;AB边上的高,可利用勾股定理求出等于,B成立;DE是△CAB的中位线,可得DE∥AB,利用平行线分线段成比例定理的推论,可得△CDE∽△CAB,C成立;由△CDE∽△CAB,且相似比等于1:2,那么它们的面积比等于相似比的平方,就等于1:4,D也成立.【详解】解:∵DE是它的中位线,∴DE=AB=1,故A正确,∴DE∥AB,∴△CDE∽△CAB,故C正确,∴S△CDE:S△CAB=DE2:AB2=1:4,故D正确,∵等边三角形的高=,故B正确.故选ABCD.【考点】本题利用了:1、三角形中位线的性质;2、相似三角形的判定:一条直线与三角形一边平行,则它所截得三角形与原三角形相似;3、相似三角形的面积等于对应边的比的平方;4、等边三角形的高=边长×sin60°.6、ABD【解析】【分析】利用反比例函数的性质及反比例函数的图象上的点的坐标特征逐项判定即可.【详解】解:①根据反比例函数的图象的两个分支分别位于二、四象限,可得m<0,故①正确;②在每个分支上y随x的增大而增大,故②正确;③若点A(﹣1,a)、点B(2,b)在图象上,则a>b,故③错误;④若点P(x,y)在图象上,则点P1(﹣x,﹣y)也在图象上,正确.故选:ABD.【考点】本题主要考查了反比例函数的性质及反比例函数的图象上的点的坐标特征,掌握反比例函数的图象上的点的坐标特征成为解答本题的关键.7、ACD【解析】【分析】根据圆内接四边形性质直接可判断A选项正确;利用切线的性质可判断B选项错误;根据正多边形中心角的定义和多边形外角和可对判断C选项正确;根据切线长定理可判断D选项正确.【详解】A.由圆内接四边形定义得:对角互补的四边形是圆内接四边形,A选项正确;B.圆的切线垂直于过切点的半径,B选项错误;C.正多边形中心角的度数等于这个正多边形一个外角的度数,都等于,C选项正确;D.过圆外一点引的圆的两条切线,则切线长相等,D选项正确.故选:ACD.【考点】本题考查了正多边形与圆、切线的性质和确定圆的条件,解题关键是熟练掌握有关的概念.三、填空题1、①③④【解析】【分析】由根的判别式,根与系数的关系进行判断,即可得到答案.【详解】解:根据题意,∵一元二次方程,∴;∴当,即时,方程有两个不相等的实根;故①正确;当,解得:,方程有两个同号的实数根,则当时,方程可能有两个异号的实根;故②错误;抛物线的对称轴为:,则当时,方程的两个实根不可能都小于1;故③正确;由,则,解得:或;故④正确;∴正确的结论有①③④;故答案为:①③④.【考点】本题考查了二次函数的性质,一元二次方程根的判别式,根与系数的关系,解题的关键是掌握所学的知识进行解题.2、路程s一定,速度v与时间t之间的关系(答案不唯一).【解析】【分析】利用反比例函数的定义并结合生活中的实例来解答此题即可【详解】根据路程=速度时间,速度v则可以用反比例函数来表示.故答案可以为路程s一定,速度v与时间t之间的关系(答案不唯一).【考点】本题主要考查了反比例函数的定义形式如(k为常数,)的函数称为反比例函数.其中x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.3、

S=-3x2+24x

≤x<8【解析】【详解】可先用篱笆的长表示出BC的长,然后根据矩形的面积=长×宽,得出S与x的函数关系式,并根据墙的最大可用长度为10米,列不等式组即可得出自变量的取值范围.解:由题可知,花圃的宽AB为x米,则BC为(24−3x)米.∴S=x(24−3x)=−3x2+24x.∵0<24−3x≤10,解得≤x<8,故答案为S=-3x2+24x,≤x<8.4、(1,0)【解析】【分析】根据表中数据得到点(-2,-3)和(0,-3)对称点,从而得到抛物线的对称轴为直线x=-1,再利用表中数据得到抛物线与x轴的一个交点坐标为(-3,0),然后根据抛物线的对称性就看得到抛物线与x轴的一个交点坐标.【详解】∵x=-2,y=-3;x=0时,y=-3,∴抛物线的对称轴为直线x=-1,∵抛物线与x轴的一个交点坐标为(-3,0),∴抛物线与x轴的一个交点坐标为(1,0).故答案为(1,0).【考点】本题考查了抛物线与x轴的交点:把求二次函数y=ax2+bx+c(a,b,c是常数,a≠0)与x轴的交点坐标问题转化解关于x的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.5、【解析】【分析】根据三角函数的性质得,即可比较它们的大小关系.【详解】∵∴故答案为:<.【考点】本题考查了三角函数值大小比较的问题,掌握三角函数的性质是解题的关键.6、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值.【详解】解:∵二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴当x=2x1+2x2时,y=2×0+2020=0+2020=2020,故答案为:2020.【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.7、y=.【解析】【分析】由正比例函数与反比例函数的两个交点关于原点对称,可得m2-7=2,由点A在第三象限可求m的值,即可求点A坐标,代入解析式可求解.【详解】解:∵一条过原点的直线与反比例函数的图象相交于A、B两点,∴点A与点B关于原点对称,∴m2-7=2,∴m=±3,∵点A在第三象限,∴m<0,∴m=-3,∴点A(-3,-2),∵点A在反比例函数的图象上,∴k=-3×(-2)=6,∴反比例函数的表达式为y=,故答案为:y=.【考点】本题考查了反比例函数与一次函数的交点问题,掌握正比例函数与反比例函数的两个交点关于原点对称是本题的关键.四、解答题1、9【解析】【分析】过点A作AF⊥BC交BC于F,则由已知得:BC=2BF,首先由AB=AC,∠BAC=120°得∠B=∠C=30°,则在直角三角形BAE中求出AB,再在直角三角形AFB中求出BF,从而求出BC.【详解】解:过点A作AF⊥BC交BC于F,∵AB=AC,∠BAC=120°,∴∠B=∠C=30°,BC=2BF,在Rt△BAE中,AE=3cm,∴AB=cm,在Rt△AFB中,BF=AB•cos30°=,∴BC=2BF=2×=9.【考点】本题考查了等腰三角形的性质和解直角三角形,通过作辅助线构造直角三角形是解题关键2、x=6,y=10【解析】【分析】设,则x=3k,y=5k,z=6k,由可求得k的值,从而可求得x与y的值.【详解】设,则x=3k,y=5k,z=6k∵∴解得:k=2∴x=3×2=6,y=5×2=10即x、y的值分别为6、10【考点】本题考查了比例的性质,若几个比相等,即,常常设其比值为k,则有a=kb,c=kd,e=kf,再根据题目条件解答则更简便.3、(1)证明见解析;(2)35°【解析】【详解】试题分析:(1)要证明CB∥PD,只要证明∠1=∠P;由∠1=∠C,∠P=∠C,可得∠1=∠P,即可解决问题;(2)在Rt△CEB中,求出∠C即可解决问题.试题解析:(1)如图,∵∠1=∠C,∠P=∠C,∴∠1=∠P,∴CB∥PD;(2)∵CD⊥AB,∴∠CEB=90°,∵∠CBE=55°,∴∠C=90°﹣55°=35°,∴∠P=∠C=35°.【考点】主要考查了圆周角定理、垂径定理、直角三角形的性质等知识,解题的关键是熟练掌握基本知识.4、(1);(2)2.【解析】【分析】(1)先去绝对值,零指数幂,负指数幂,二次根式化简,再合并同类项即可;(2)先计算负指数幂,代

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论