版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在中,,cm,cm.以C为圆心,r为半径的与直线AB相切.则r的取值正确的是()A.2cm B.2.4cm C.3cm D.3.5cm2、下列图形中,可以看作是中心对称图形的是()A. B.C. D.3、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个 B.2个 C.3个 D.4个4、下列各点中,关于原点对称的两个点是()A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)5、如图,AB是的直径,弦CD交AB于点P,,,,则CD的长为()A. B. C. D.86、下列事件中,是必然事件的是()A.刚到车站,恰好有车进站B.在一个仅装着白乒乓球的盒子中,摸出黄乒乓球C.打开九年级上册数学教材,恰好是概率初步的内容D.任意画一个三角形,其外角和是360°7、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为()A.3 B.4 C.5 D.68、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、点P为边长为2的正方形ABCD内一点,是等边三角形,点M为BC中点,N是线段BP上一动点,将线段MN绕点M顺时针旋转60°得到线段MQ,连接AQ、PQ,则的最小值为______.2、有四张完全相同的卡片,正面分别标有数字,,,,将四张卡片背面朝上,任抽一张卡片,卡片上的数字记为,再从剩下卡片中抽一张,卡片上的数字记为,则二次函数的对称轴在轴左侧的概率是__________.3、有五张正面分别标有数字,,0,1,2的不透明卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中任取一张,将该卡片上的数字记为,将该卡片放回洗匀后从中再任取一张,将该卡片上的数字记为,则为非负数的概率为________.4、在菱形ABCD中,AB=6,E为AB的中点,连结AC,DE交于点F,连结BF.记∠ABC=α(0°<α<180°).(1)当α=60°时,则AF的长是_____;(2)当α在变化过程中,BF的取值范围是_____.5、一个五边形共有__________条对角线.6、如图,已知⊙O的半径为2,弦AB的长度为2,点C是⊙O上一动点若△ABC为等腰三角形,则BC2为_______.7、如图,半圆O中,直径AB=30,弦CD∥AB,长为6π,则由与AC,AD围成的阴影部分面积为_______.三、解答题(7小题,每小题0分,共计0分)1、4张相同的卡片上分别写有数字0、1、、3,将卡片的背面朝上,洗后从中任意抽取1张,将卡片上的数字记录下来;再从余下的3张卡片中任意抽取1张,同样将卡片上的数字记录下来.(1)第一次抽取的卡片上数字是非负数的概率为______;(2)小敏设计了如下游戏规则:当第一次记录下来的数字减去第二次记录下来的数字所得结果为非负数时,甲获胜;否则,乙获胜.小敏设计的游戏规则公平吗?为什么?(请用树状图或列表等方法说明理由)2、(1)解方程:(2)我国古代数学专著《九章算术》中记载:“今有宛田,下周三十步,径十六步,问为田几何?”注释:宛田是指扇形形状的田,下周是指弧长,径是指扇形所在圆的直径.求这口宛田的面积.3、如图,在△ABC中,∠ACB=90°,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90°得到线段CE,连接DE、BE(1)求证:△ACD≌△BCE;(2)若BE=5,DE=13,求AB的长4、如图,已知弓形的长,弓高,(,并经过圆心O).(1)请利用尺规作图的方法找到圆心O;(2)求弓形所在的半径的长.5、随着课后服务的全面展开,某校组织了丰富多彩的社团活动.炯炯和露露分别打算从以下四个社团:A.快乐足球,B.数学历史,C.文学欣赏,D.棋艺鉴赏中,选择一个社团参加.(1)炯炯选择数学历史的概率为______.(2)用画树状图或列表的方法求炯炯和露露选择同一个社团的概率.6、一个几何体的三个视图如图所示(单位:cm).(1)写出这个几何体的名称:;(2)若其俯视图为正方形,根据图中数据计算这个几何体的表面积.7、如图,是由若干个完全相同的小正方体组成的一个几何体.(1)请画出这个几何体的从左面看和从上面看的形状图;(用阴影表示)(2)已知每个小正方体的边长是2cm,求出这个几何体的表面积是多少?-参考答案-一、单选题1、B【分析】如图所示,过C作CD⊥AB,交AB于点D,在直角三角形ABC中,由AC与BC的长,利用勾股定理求出AB的长,利用面积法求出CD的长,即为所求的r.【详解】解:如图所示,过C作CD⊥AB,交AB于点D,在Rt△ABC中,AC=3cm,BC=4cm,根据勾股定理得:AB==5(cm),∵S△ABC=BC•AC=AB•CD,∴×3×4=×10×CD,解得:CD=2.4,则r=2.4(cm).故选:B.【点睛】此题考查了切线的性质,勾股定理,以及三角形面积求法,熟练掌握切线的性质是解本题的关键.2、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.3、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.4、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.5、A【分析】过点作于点,连接,根据已知条件即可求得,根据含30度角的直角三角形的性质即可求得,根据勾股定理即可求得,根据垂径定理即可求得的长.【详解】解:如图,过点作于点,连接,AB是的直径,,,,在中,故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.6、D【分析】根据必然事件的概念“在一定条件下,有些事件必然会发生,这样的事件称为必然事件”可判断选项D是必然事件;根据不可能事件的概念“有些事件必然不会发生,这样的事件称为不可能事件”可判断选项B是不可能事件;根据随机事件的概念“在一定条件下,可能发生也可能不发生的事件,称为随机事件”判断选项A、C是随机事件,即可得.【详解】解:A、刚到车站,恰好有车进站是随机事件;B、在一个仅装着白乒乓球的盒子中,摸出黄乒乓球是不可能事件;C、打开九年级上册数学教材,恰好是概率初步的内容是随机事件;D、任意画一个三角形,其外角和是360°是必然事件;故选D.【点睛】本题考查了必然事件,解题的关键是熟记必然事件的概念,不可能事件的概念和随机事件的概念.7、B【分析】由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.【详解】∵PA,PB是⊙O的切线,A,B为切点,∴,,∴在和中,,∴,∴.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.8、C【分析】如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH⩾CT,∴CT⩽6+3=9,∴CT的最大值为9,∴△ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.二、填空题1、【分析】如图,取的中点,连接,,,证明,进而证明在上运动,且垂直平分,根据,求得最值,根据正方形的性质和勾股定理求得的长即可求得的最小值.【详解】解:如图,取的中点,连接,,,将线段MN绕点M顺时针旋转60°得到线段MQ,,是等边三角形,,是的中点,是的中点是等边三角形,即在和中,又是的中点点在上是的中点,是等边三角,又垂直平分即的最小值为四边形是正方形,且的最小值为故答案为:【点睛】本题考查了正方形的性质等边三角形的性质,旋转的性质,全等三角形的性质与判定,勾股定理,垂直平分线的性质与判定,根据以上知识转化线段是解题的关键.2、【分析】根据二次函数的性质,对称轴为,进而可得同号,根据列表法即可求得二次函数的对称轴在轴左侧的概率【详解】解:二次函数的对称轴在轴左侧对称轴为,即同号,列表如下共有12种等可能结果,其中同号的结果有4种则二次函数的对称轴在轴左侧的概率为故答案为:【点睛】本题考查了二次函数图象的性质,列表法求概率,掌握二次函数的图象与系数的关系以及列表法求概率是解题的关键.3、【分析】求出为负数的事件个数,进而得出为非负数的事件个数,然后求解即可.【详解】解:两次取卡片共有种可能的事件;两次取得卡片数字乘积为负数的事件为等8种可能的事件∴为非负数共有种∴为非负数的概率为故答案为:.【点睛】本题考查了列举法求随机事件的概率.解题的关键在于求出事件的个数.4、2【分析】(1)证明是等边三角形,,进而即可求得;(2)过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,证明在半圆上,进而即可求得范围.【详解】(1)如图,四边形是菱形,是等边三角形是的中点即故答案为:2(2)如图,过点作,交于点,以为圆心长度为半径作半圆,交的延长延长线于点,四边形是菱形,在以为圆心长度为半径的圆上,又∠ABC=α(0°<α<180°)在半圆上,最小值为最大值为故答案为:【点睛】本题考查了相似三角形的性质与判定,点与圆的位置关系求最值问题,掌握相似三角形的性质与判定是解题的关键.5、5【分析】由n边形的对角线有:条,再把代入计算即可得.【详解】解:边形共有条对角线,五边形共有条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.6、4或12或【分析】分三种情况讨论:当AB=BC时、当AB=AC时、当AC=BC时,根据垂径定理和勾股定理即可求解.【详解】解:如图1,当AB=BC时,BC=2,故BC2=4;如图2,当AB=AC=2时,过A作AD⊥BC于D,连接OC,∴BD=CD,设OD=x,则在Rt△ACD中,AC2=CD2+AD2,在Rt△OCD中,OC2=CD2+OD2,∴CD2=AC2-AD2=OC2-OD2即22-(2-x)2=22-x2解得x=1∴CD=∴BC=2∴BC2=12;如图3,当AC=BC时,则C在AB的垂直平分线上,∴CD经过圆心O,AD=BD==1,∵OA=2,∴OD=,∴CD=CO+OD=2+,CD=C'O-OD=2-,∴BC2=CD2+BD2=(2+)2+12=,BC2=CD2+BD2=(2-)2+12=,综上,BC2为4或12或故答案为:4或12或.【点睛】本题考查了垂径定理,等腰三角形的性质,勾股定理的应用,熟练掌握性质定理是解题的关键.7、45【分析】连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=来求解.【详解】解:连接OC,OD,∵直径AB=30,∴OC=OD=,∴CD∥AB,∴S△ACD=S△OCD,∵长为6π,∴阴影部分的面积为S阴影=S扇形OCD=,故答案为:45π.【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD的面积是解题的关键.三、解答题1、(1)(2)此游戏公平,理由见解析.【分析】(1)利用概率公式求解即可;(2)利用列表法列举出所有可能,进而利用概率公式进而得出甲、乙获胜的概率即可得出答案.(1)解:第一次抽取的卡片上数字是非负数的概率为,故答案为:.(2)解:列表如下:01-2301-231-1-32-22353-3-2-5由表可知,共有12种等可能结果,其中结果为非负数的有6种结果,结果为负数的有6种结果,所以甲获胜的概率=乙获胜的概率==,∴此游戏公平.【点睛】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个参与者取胜的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.2、(1),;(2)平方步【分析】(1)利用配方法,即可求解;(2)利用扇形的面积公式,即可求解.【详解】解:(1),,配方,得,∴,∴,;(2)解:∵扇形的田,弧长30步,其所在圆的直径是16步,∴这块田的面积(平方步).【点睛】本题主要考查了解一元二次方程,求扇形的面积,熟练掌握一元二次方程的解法,扇形的面积等于乘以弧长再乘以扇形的半径是解题的关键.3、(1)见解析;(2)17【分析】(1)由旋转的性质可得CD=CE,∠DCE=90°=∠ACB,由“SAS”可证△ACD≌△BCE;(2)由∠ACB=90°,AC=BC,可得∠CAB=∠CBA=45°,再由△ACD≌△BCE,得到BE=AD=5,∠CBE=∠CAD=45°,则∠ABE=∠ABC+∠CBE=90°,然后利用勾股定理求出BD的长即可得到答案.【详解】解:(1)证明:∵将线段CD绕点C按逆时针方向旋转90°得到线段CE,∴CD=CE,∠DCE=90°=∠ACB,∴∠ACD+∠BCD=∠BCE+∠BCD,即∠ACD=∠BCE,在△ACD和△BCE中,,∴△ACD≌△BCE(SAS);(2)∵∠ACB=90°,AC=BC,∴∠CAB=∠CBA=45°,∵△ACD≌△BCE,∴BE=AD=5,∠CBE=∠CAD=45°,∴∠ABE=∠ABC+∠CBE=90°,∴,∴AB=AD+BD=17.【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角形全等是解题的关键.4、(1)见解析(2)10【分析】(1)作BC的垂直平分线,与直线CD的交点即为圆心;(2)连接OA,根据勾股定理列出方程即可求解.(1)解:如图所示,点O即是圆心;(2)解:连接OA,∵,并经过圆心O,,∴,∵,∴解得,,答:半径为10.【点睛】本题考查了垂径定理和确定圆心,解题关键是熟练作图确定圆心,利用垂径定理和勾股定理求半径.5、(1)(2)炯炯和露露选择同一个社团的概率为【分析】(1)直接由概率公式求解即可;(2)画树状图,共有16种等可能的结果,其中炯炯和露露选同一个社团
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025202车辆维修服务合同范本
- 心态培训小故事
- 2025新天地景观仿真花木工程合同
- 2025鸭苗销售订购合同
- 互联网实训报告
- 销售行业新人入职培训
- 脑出血术后恢复训练计划
- 2025版代理合同范本范文大全
- 总经理年度工作述职报告
- 预防医学科流感疫苗接种建议
- 3D建模技术在水文地质中的应用-洞察阐释
- 智能化宽带网络网关(iBNG)技术白皮书
- 固定资产明细表模板
- 工程合同续签协议范本
- 检验科标本溢洒处理流程与规范
- 起重机培训课件桥式起重机
- 《秋季腹泻》课件
- 《病区护理人文关怀管理规范》团体标准解读
- 2025春季学期国开电大本科《现代汉语专题》一平台在线形考(任务1至5)试题及答案
- 新版青海省事业单位专业技术人员考核登记表
- 设备损坏赔偿协议书
评论
0/150
提交评论