难点解析-河北石家庄市第二十三中7年级数学下册第五章生活中的轴对称专项训练试卷(解析版)_第1页
难点解析-河北石家庄市第二十三中7年级数学下册第五章生活中的轴对称专项训练试卷(解析版)_第2页
难点解析-河北石家庄市第二十三中7年级数学下册第五章生活中的轴对称专项训练试卷(解析版)_第3页
难点解析-河北石家庄市第二十三中7年级数学下册第五章生活中的轴对称专项训练试卷(解析版)_第4页
难点解析-河北石家庄市第二十三中7年级数学下册第五章生活中的轴对称专项训练试卷(解析版)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北石家庄市第二十三中7年级数学下册第五章生活中的轴对称专项训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A.吉 B.祥 C.如 D.意2、下列图形中,不一定是轴对称图形的是()A.直角三角形 B.等腰三角形 C.等边三角形 D.正方形3、如图,将正方形图案翻折一次,可以得到的图案是()A. B. C. D.4、下列图形中,不是轴对称图形的是()A. B. C. D.5、下列图形为轴对称图形的是()A. B. C. D.6、如图,下列图案是我国几家银行的标志,其中不是轴对称图形的是()A. B. C. D.7、如图.点D,E分别在△ABC的边BC,AB上,连接AD、DE,将△ABC沿直线DE折叠后,点B与点A重合,已知AC=6cm,△ADC的周长为14cm,则线段BC的长为()A.6cm B.8cm C.12cm D.20cm8、自新冠肺炎疫情发生以来,莆田市积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中的图案是轴对称图是()A.有症状早就医 B.打喷捂口鼻C.防控疫情我们在一起 D.勤洗手勤通风9、下列冰雪运动项目的图标中,是轴对称图形的是()A. B. C. D.10、在一些美术字中,有的汉字是轴对称图形.下面个汉字中,可以看作是轴对称图形的是()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、在一条可以折叠的数轴上,A,B表示的数分别是-16,9,如图,以点C为折点,将此数轴向右对折,若点A在点B的右边,且AB=1,则C点表示的数是_______.2、如图,在平行四边形中,,在内有一点,将向外翻折至,其中为其对称轴,过点,分别作,的垂线,垂足为,,,,已知,,那么__________.3、如图,在中,点、分别为边、上的点,连接,将沿翻折得到,使.若,,则的大小为______.4、如图,将一张长方形纸片ABCD沿EF折叠,点D、C分别落在点D′、C′的位置处,若∠1=58°,则∠EFB的度数是______.5、在“线段,角,相交线,等腰三角形”这四个图形中,是轴对称图形的有___个.6、梯形(如图)是有由一张长方形纸折叠而成的,这个梯形的面积是(______).7、如图,点关于、的对称点分别是,,线段分别交、于、,cm,则的周长为________cm.8、小明和小颖下棋,小明执圆子,小颖执方子.如图,棋盘中心方子的位置用(0,﹣1)表示,右上角方子的位置用(1,0)表示.小明将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置可以表示为____.9、如图,在RtABC中,∠ACB=90°,AB=4,点D、E分别在AB、AC上,且AD=.连接DE,将ADE沿DE翻折,使点A的对应点F落在BC的延长线上,连接FD,且FD交AC于点G.若FD平分∠EFB,则∠ADE=___°,FG=___.10、如图,与关于直线对称,则∠B的度数为________°.三、解答题(6小题,每小题10分,共计60分)1、在4×4的方格中有五个同样大小的正方形如图摆放,请分别在甲、乙、丙三个图中添加一个正方形到空白方格中,使它与其余五个正方形组成的新图形是一个轴对称图形,并画出图形.2、如图,将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处.求∠1+∠2的度数.3、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.4、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?(分析)把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C’处,即AC=AC’,据以上操作,易证明△ACD≌△AC’D,所以∠AC’D=∠C,又因为∠AC’D>∠B,所以∠C>∠B.(感悟与应用)(1)如图(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分∠DAB,CD=CB.求证:∠B+∠D=180°.5、如图,在4×4的正方形方格中,阴影部分是涂黑5个小正方形所形成的图案.将方格内空白的两个小正方形涂黑,使得到的新图案成为一个轴对称图形,请在下面的图中至少画出四个不同的方案,并画出对称轴.6、如图1是4×4正方形网格,其中已有3个小方格涂成了黑色.现要从其余13个白色小方格中选出一个也涂成黑色,使整个涂成黑色的图形成为轴对称图形.(1)可能的位置有种.(2)请在图1中利用阴影标出所有可能情况.图1备用图-参考答案-一、单选题1、A【分析】根据轴对称的定义去判断即可.【详解】∵吉是轴对称图形,∴A符合题意;∵祥不是轴对称图形,∴B不符合题意;∵如不是轴对称图形,∴C不符合题意;∵意不是轴对称图形,∴D不符合题意;故选A.【点睛】本题考查了轴对称图形,熟练掌握轴对称图形的定义即一个图形沿着某条直线折叠,直线两旁的图形能完全重合,是解题的关键.2、A【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A.【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.3、B【分析】根据轴对称的性质进行解答判断即可.【详解】解:利用轴对称可得将正方形图案翻折一次,可以得到的图案是,故选:B.【点睛】本题考查了轴对称的性质,熟练掌握轴对称的定义与性质是解本题的关键.4、A【详解】A、不是轴对称图形,故符合题意;B、是轴对称图形,故不符合题意;C、是轴对称图形,故不符合题意;D、是轴对称图形,故不符合题意;故选A.【点睛】本题主要考查轴对称图形的识别,熟练掌握“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫轴对称图形”是解题的关键.5、A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.6、C【分析】将一个图形沿着一条直线翻折后,两侧能够完全重合的图形是轴对称图形,根据定义判断即可.【详解】A、是轴对称图形;B、是轴对称图形;C、不是轴对称图形;D、是轴对称图形,故选:C.【点睛】此题考查轴对称图形的定义,正确理解图形的特点是解题的关键.7、B【分析】由折叠的性质得出BD=AD,由题意得出AD+DC=BD+DC=BC即可得出答案.【详解】解:∵△ABC沿直线DE折叠后,点B与点A重合,∴BD=AD,∵AC=6cm,△ADC的周长为14cm,∴AD+DC=14-6=8cm,∴BD+DC=BC=8cm,故选:B【点睛】此题主要考查了翻折变换的性质,根据题意得出AD=BD是解题关键.8、C【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形进行解答即可.【详解】解:A、不是轴对称图形,故A不符合题意;B、不是轴对称图形,故B不符合题意;C、是轴对称图形,故C符合题意;D、不是轴对称图形,故D不符合题意.故选C.【点睛】本题主要考查了轴对称图形,正确掌握轴对称图形的性质是解题关键.9、D【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,据此可得结论.【详解】解:A.不是轴对称图形,故本选项不合题意;B.不是轴对称图形,故本选项不合题意;C.不是轴对称图形,故本选项不合题意;D.是轴对称图形,故本选项符合题意;故选:D.【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.10、A【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.利用轴对称图形的定义进行判断即可.【详解】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项不符合题意;故选:A【点睛】此题主要考查了轴对称图形的定义,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.二、填空题1、-3【分析】根据A与B表示的数求出AB的长,再由折叠后AB的长,求出BC的长,即可确定出C表示的数.【详解】解:∵A,B表示的数为−16,9,∴AB=9−(−16)=25,∵折叠后AB=1,∴BC==12,∵点C在B的左侧,∴C点表示的数为9-12=−3.故答案为:-3.【点睛】此题考查了数轴,折叠的性质,熟练掌握各自的性质是解本题的关键.2、36【分析】连接,,根据折叠的性质可得,根据四边形四边形,结合已知条件即可求得.【详解】解:如图,连接,,∵将向外翻折至,其中为其对称轴,∴,∵四边形四边形,∴,∴,故答案为:36.【点睛】本题考查了轴对称的性质,利用四边形四边形结合已知条件计算是解题的关键.3、30【分析】由得出,由折叠性质可知,,再根据三角形外角性质求出.【详解】解:如图,设交于点,∵,,由折叠性质可知,,.故答案为:【点睛】本题主要考查了平行线的性质,三角形外角的性质,熟练掌握三角形的外角等于与它不相邻的两个内角的和是解题的关键.4、61°【分析】根据折叠性质得出∠DED′=2∠DEF,根据∠1的度数求出∠DED′,即可求出∠DEF的度数,进而得到答案.【详解】解:由翻折的性质得:∠DED′=2∠DEF,∵∠1=58°,∴∠DED′=180°-∠1=122°,∴∠DEF=61°,又∵AD∥BC,∴∠EFB=∠DEF=61°.故答案为:61°.【点睛】本题考查了平行线的性质,翻折变换的性质,邻补角定义的应用,熟记折叠的性质是解题的关键.5、4【分析】根据轴对称的定义,即有一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称判断即可;【详解】解:根据轴对称图形的定义可知:一条线段的对称轴是线段的垂直平分线;一个角其对称轴是该角的角平分线所在的直线;相交线是轴对称图形,等腰三角形是轴对称图形,故共有4个轴对称图形.故答案为:4.【点睛】本题主要考查了轴对称图形的判定,准确分析判断是解题的关键.6、69【分析】通过观察图形可知,这个梯形上底是9cm,下底是(9+5)cm,高是6cm,根据梯形的面积公式:S=(a+b)h÷2,把数据代入公式解答【详解】解:根据折叠可得梯形上底是9cm,下底是(9+5)cm,高是6cm(9+9+5)×6÷2=23×6÷2=138÷2=69()故答案为:69【点睛】此题主要考查梯形面积公式的灵活运用,关键是熟记公式7、8【分析】首先根据点P关于OA、OB的对称点分别是P1,P2,可得PD=P1D,PC=P2C;然后根据P1P2=8cm,可得P1D+DC+P2C=8cm,所以PD+DC+PC=8cm,即△PCD的周长为8cm,据此解答即可.【详解】解:∵点P关于OA、OB的对称点分别是P1,P2,∴PD=P1D,PC=P2C;∵P1P2=8(cm),∴P1D+DC+P2C=8(cm),∴PD+DC+PC=8(cm),即△PCD的周长为8cm.故答案为:8.【点睛】本题考查了轴对称的性质的应用,要熟练掌握,解题的关键是判断出:PD=P1D,PC=P2C.此题还考查了三角形的周长的含义以及求法的应用,要熟练掌握.8、【分析】根据题意确定坐标原点的位置,根据轴对称图形的性质,确定圆子的位置,再求出坐标即可.【详解】解:根据题意可得:棋盘中心方子的坐标为(0,﹣1),右上角方子的坐标为(1,0)则坐标原点为最右侧中间圆子的位置,如图建立坐标系:放入第4枚圆子,使得图形为轴对称图形,则圆子的位置应该在中间一排方子的上方,如下图:点的位置坐标为故答案为【点睛】此题考查了图形与坐标,轴对称图形的性质,解题的关键是根据题意确定原点的位置并且确定轴对称图形时,圆子的位置.9、45°【分析】先根据题意可得BD=4-,∠FCG=90°,再根据翻折的性质可得,,,结合FD平分∠EFB可得,由此可证得∠ADG=∠FCG=90°,则,进而可证明,由此可得,进而即可求得FG的长.【详解】解:∵AB=4,AD=,∴BD=AB-AD=4-,∵∠ACB=90°,∴∠FCG=180°-∠ACB=90°,∵翻折,∴,∴,,,∵FD平分∠EFB,∴,∴,又∵,∴,即∠ADG=∠FCG=90°,∴∠FDB=180°-∠ADG=90°=∠ADG,,在与中,,∴,∴,∴,故答案为:45°;.【点睛】本题考查了翻折的性质,全等三角形的判定与性质,熟练掌握全等三角形的判定与性质是解决本题的关键.10、105°【分析】根据轴对称的性质,轴对称图形全等,则∠A=∠A′,∠B=∠B′,∠C=∠C′,再根据三角形内角和定理即可求得.【详解】∵△ABC与△A′B′C′关于直线l对称,∴△ABC≌△A′B′C′,∴∠A=∠A′,∠B=∠B′,∠C=∠C′,∴∠C=∠C′=40°,∠A=∠A′=35°∴∠B=180°−35°−40°=105°.故答案为:105°.【点睛】本题考查了轴对称图形的性质,全等的性质,三角形内角和定理,理解轴对称图形的性质是解题的关键.三、解答题1、见解析【分析】根据轴对称图形的性质找出格点即可.【详解】解:如图所示..【点睛】本题考查的是利用轴对称设计图案,解答此题要明确轴对称的性质,并据此构造出轴对称图形,然后将对称部分涂黑,即为所求.2、180°【分析】根据翻折变换前后对应角不变,故∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∠1+∠2+∠HOG+∠EOF+∠DOE=360°,进而求出∠1+∠2的度数.【详解】解:∵将△ABC三个角分别沿DE、HG、EF翻折,三个顶点均落在点O处,∴∠B=∠HOG,∠A=∠DOE,∠C=∠EOF,∵∠1+∠2+∠HOG+∠EOF+∠DOE=360°,∵∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°,∴∠1+∠2=360°﹣180°=180°.【点睛】此题主要考查了翻折变换的性质和三角形的内角和定理,根据已知得出∠HOG+∠EOF+∠DOE=∠A+∠B+∠C=180°是解题关键.3、∠AFB=40°.【分析】由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.【详解】解:∵AD⊥BE,∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,∵AE是∠MAC的平分线,BF平分∠ABC,∴,又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,∴∠AFB=∠MAE﹣∠ABF=.【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.4、(1)AC+AD=BC;(2)证明见解答过程;【分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论