




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、记某商品销售单价为x元,商家销售此种商品每月获得的销售利润为y元,且y是关于x的二次函数.已知当商家将此种商品销售单价分别定为55元或75元时,他每月均可获得销售利润1800元;当商家将此种商品销售单价定为80元时,他每月可获得销售利润1550元,则y与x的函数关系式是(
)A.y=﹣(x﹣60)2+1825 B.y=﹣2(x﹣60)2+1850C.y=﹣(x﹣65)2+1900 D.y=﹣2(x﹣65)2+20002、已知点都在反比例函数的图象上,且,则下列结论一定正确的是(
)A. B. C. D.3、如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东方向,且与他相距,则图书馆A到公路的距离为(
)A. B. C. D.4、如图,正五边形内接于⊙,为上的一点(点不与点重合),则的度数为(
)A. B. C. D.5、已知A、B两地相距10km,在地图上相距10cm,则这张地图的比例尺是(
).A.100000:1 B.1000:1 C.1:100000 D.1:10006、如图所示,某校数学兴趣小组利用标杆测量建筑物的高度,已知标杆高,测得,,则建筑物的高是()A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、在Rt△ABC中,∠C=90°,下列式子一定成立的是(
)A.sinA=sinB B.cosA=sinB C.sinA=cosB D.∠A+∠B=90°2、下列说法中,正确的是(
)A.两角对应相等的两个三角形相似B.两边对应成比例的两个三角形相似C.两边对应成比例且夹角相等的两个三角形相似D.三边对应成比例的两个三角形相似3、如图,△ABC中,P为AB上点,在下列四个条件中能确定△APC和△ACB相似的是(
)A.∠ACP=∠B B.∠APC=∠ACB C.∠CAP=∠BAC D.4、下列用尺规等分圆周的说法中,正确的是(
)A.在圆上依次截取等于半径的弦,就可以六等分圆B.作相互垂直的两条直径,就可以四等分圆C.按A的方法将圆六等分,六个等分点中三个不相邻的点三等分圆D.按B的方法将圆四等分,再平分四条弧,就可以八等分圆周5、如图,在△ABC中,∠C=90°,AB=5cm,cosB=.动点D从点A出发沿着射线AC的方向以每秒1cm的速度移动,动点E从点B出发沿着射线BA的方向以每秒2cm的速度移动.已知点D和点E同时出发,设它们运动的时间为t秒,连接BD.下列结论正确的有()A.BC=4cm;B.当AD=AB时,tan∠ABD=2;C.以点B为圆心、BE为半径画⊙B,当t=时,DE与⊙B相切;D.当∠CBD=∠ADE时,t=.6、下列说法不正确的是()A.相切两圆的连心线经过切点 B.长度相等的两条弧是等弧C.平分弦的直径垂直于弦 D.相等的圆心角所对的弦相等7、如图,AB是的直径,C是上一点,E是△ABC的内心,,延长BE交于点F,连接CF,AF.则下列结论正确的是(
)A. B.C.△AEF是等腰直角三角形 D.若,则第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,矩形ABCD中,点E,F分别在AD,BC上,且AE=DE,BC=3BF,连接EF,将矩形ABCD沿EF折叠,点A恰好落在BC边上的点G处,则cos∠EGF的值为_____.2、写出一个满足“当时,随增大而减小”的二次函数解析式______.3、已知二次函数,当分别取时,函数值相等,则当取时,函数值为______.4、在每个小正方形的边长为1的网格图形中,每个小正方形的顶点称为格点,顶点都是格点的三角形称为格点三角形.如图,已知Rt△ABC是6×6网格图形中的格点三角形,则该图中所有与Rt△ABC相似的格点三角形中.面积最大的三角形的斜边长是_____.5、如图,某建筑物BC直立于水平地面,AC=9m,要建造阶梯AB,使每阶高不超过20cm,则此阶梯最少要建_____阶.(最后一阶的高度不足20cm时,按一阶算,取1.732)6、如图,已知DC为∠ACB的平分线,DE∥BC.若AD=8,BD=10,BC=15,求EC的长=_____.7、如图,二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),它的对称轴为直线x=1,则下列结论中:①c=3;②2a+b=0;③8a-b+c>0;④方程ax2+bx+c=0的其中一个根在2,3之间,正确的有_______(填序号).四、解答题(6小题,每小题10分,共计60分)1、如图,∠1=∠2=∠3,试找出图中两对相似三角形,并说明为什么?2、如图,在中,,,,为的中点.动点从点出发以每秒个单位向终点匀速运动(点不与、、重合),过点作的垂线交折线于点.以、为邻边构造矩形.设矩形与重叠部分图形的面积为,点的运动时间为秒.(1)直接写出的长(用含的代数式表示);(2)当点落在的边上时,求的值;(3)当矩形与重叠部分图形不是矩形时,求与的函数关系式,并写出的取值范围;(4)沿直线将矩形剪开,得到两个图形,用这两个图形拼成不重叠且无缝隙的图形恰好是三角形.请直接写出所有符合条件的的值.3、已知抛物线y=mx2-2mx-3.(1)若抛物线的顶点的纵坐标是-2,求此时m的值;(2)已知当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,求出这两个定点的坐标.4、某厂家生产一批遮阳伞,每个遮阳伞的成本价是20元,试销售时发现:遮阳伞每天的销售量y(个)与销售单价x(元)之间是一次函数关系,当销售单价为28元时,每天的销售量为260个;当销售单价为30元时,每天的销售量为240个.(1)求遮阳伞每天的销出量y(个)与销售单价x(元)之间的函数关系式;(2)设遮阳伞每天的销售利润为w(元),当销售单价定为多少元时,才能使每天的销售利润最大?最大利润是多少元?5、已知:.(1)求代数式的值;(2)如果,求的值.6、如图所示,直线y=x+2与坐标轴交于A、B两点,与反比例函数y=(x>0)交于点C,已知AC=2AB.(1)求反比例函数解析式;(2)若在点C的右侧有一平行于y轴的直线,分别交一次函数图象与反比例函数图象于D、E两点,若CD=CE,求点D坐标.-参考答案-一、单选题1、D【解析】【分析】设二次函数的解析式为:y=ax2+bx+c,根据题意列方程组即可得到结论.【详解】解:设二次函数的解析式为:y=ax2+bx+c,∵当x=55,y=1800,当x=75,y=1800,当x=80时,y=1550,∴,解得a=−2,b=260,c=−6450,∴y与x的函数关系式是y=﹣2x2+260x﹣6450=﹣2(x﹣65)2+2000,故选:D.【考点】本题考查了根据实际问题列二次函数关系式,正确的列方程组是解题的关键.2、C【解析】【分析】根据反比例函数的性质,可得答案.【详解】反比例函数中,=-2020<0,图象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故选:C.【考点】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.3、A【解析】【分析】根据题意可得△OAB为直角三角形,∠AOB=30°,OA=200m,根据三角函数定义即可求得AB的长.【详解】解:由已知得,∠AOB=90°60°=30°,OA=200m.则AB=OA=100m.故选:A.【考点】本题主要考查了解直角三角形的应用——方向角问题,正确记忆三角函数的定义是解决本题的关键.4、B【解析】【分析】根据圆周角的性质即可求解.【详解】连接CO、DO,正五边形内心与相邻两点的夹角为72°,即∠COD=72°,同一圆中,同弧或同弦所对应的圆周角为圆心角的一半,故∠CPD=,故选B.【考点】此题主要考查圆内接多边形的性质,解题的关键是熟知圆周角定理的应用.5、C【解析】【分析】比例尺=图上距离:实际距离,根据题意可直接求得比例尺.【详解】∵10km=1000000cm,∴比例尺为10:1000000=1:100000.故选C.【考点】掌握比例尺的计算方法,注意在求比的过程中,单位要统一.比例尺=图上距离:实际距离,图上距离在前,实际距离在后.6、A【解析】【分析】先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.【详解】解:∵,∴AC=1.2m+12.8m=14m∵标杆和建筑物CD均垂直于地面∴BE//CD∴△ABE∽△ACD∴,即,解得CD=17.5m.故答案为A.【考点】本题考查了相似三角形的应用,正确判定相似三角形并利用相似三角形的性质列方程计算是解答本题的关键.二、多选题1、BCD【解析】【分析】根据互为余角的三角函数关系,可判断A、B、C;根据直角三角形的性质,可判断D.【详解】解:∵∠C=90°,∴∠A+∠B=90°,A、A≠B时,sinA≠sinB,故A错误;B、∵∠A+∠B=90°,∴cosA=sinB,故B正确;C、∵∠A+∠B=90°,∴sinA=cosB,故C正确;D、∵∠C=90°,∴∠A+∠B=90°,故D正确;故选:BCD.【考点】本题考查了互余两角三角函数的关系,熟记同角(或余角)的三角函数关系式是解题的关键.2、ACD【解析】【分析】根据相似三角形的判定定理判断即可.【详解】A
“两角对应相等的两个三角形相似”是正确的;B
“两边对应成比例的两个三角形相似”是错误的,还需添上条件“且夹角相等”才成立;C
“两边对应成比例且夹角相等的两个三角形相似”是正确的;D
“三边对应成比例的两个三角形相似”是正确的故选:ACD【考点】本题考查了相似三角形的判定定理,做题的关键是熟练掌握相似三角形的判定定理.3、ABD【解析】【分析】根据有两组角对应相等的两个三角形相似可对A、B、C进行判断;根据两组对应边的比相等且夹角对应相等的两个三角形相似可对D进行判断.【详解】解:∵∠ACP=∠B,∠A公共角,∴△APC∽△ACB,故选项A正确,符合题意;∵∠APC=∠ACB,∠A公共角,∴△APC∽△ACB,故选项B正确,符合题意;∵∠CAP=∠BAC,只有一组角相等,∴不能判断△APC和△ACB相似,故选项C错误,不符合题意;∵,∠A是夹角,∴△APC∽△ACB,故选项D正确,符合题意.故答案为:ABD.【考点】本题考查了相似三角形的判定:两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.4、ABCD【解析】【分析】由圆心角、弧、弦的关系定理得出ABCD正确,即可得出结论.【详解】解:根据圆心角、弧、弦的关系定理得:在圆上依次截取等于半径的弦,六条弧相等,就可以六等分圆,∴A正确;∵相互垂直的两条直径得出4个相等的圆心角是直角,∴4条弧相等,∴B正确;在圆上依次截取等于半径的弦,六条弧相等,六个等分点中三个不相邻的点三等分圆,∴C正确;∵相互垂直的两条直径得出4个相等的圆心角是直角,再平分四条弧,就可以八等分圆周,∴D正确;故选:ABCD.【考点】本题考查了正多边形和圆、圆心角、弧、弦的关系定理;熟练掌握圆心角、弧、弦的关系定理,由题意得出相等的弧是解题的关键.5、AB【解析】【分析】A.根据AB=5cm,cosB=即可求出BC的长度;B.由AD=AB,可得∠ABD=∠D,根据勾股定理求出AC的长度,然后在Rt△BCD中,即可求出tan∠ABD=tan∠D=2;C.根据DE与⊙B相切时,DE⊥BE,可得cos∠A=,代入即可求出运动的时间t的值,即可判断;D.根据题意可得满足条件的t的值应该有两个,进而可判断.【详解】A、在△ABC中,∵∠ACB=90°,AB=5cm,cosB=,∴,∴BC=AB•cos∠ABC=5×=4(cm),故A正确.B、在直角△ABC中,AC==3(cm),当AD=AB=5时,∠ABD=∠D,如图1,∴CD=AD﹣AC=5﹣3=2(cm),在Rt△BCD中,tan∠D==2,∴tan∠ABD=tan∠D=2,故B正确,C、如图,当DE与⊙B相切时,DE⊥BE.则有cos∠A=,∴,∴t=,当t=时,DE与⊙B相切;故C错误.D、满足条件的t的值应该有两个,显然D错误,故答案为:AB.【考点】此题考查了三角形动点问题,解直角三角形,圆切线的性质和判定,解题的关键是正确分析题目中的等量关系列出方程求解.6、BCD【解析】【分析】要找出正确命题,可运用相关基础知识分析找出正确选项,也可以通过举反例排除不正确选项,从而得出正确选项.(1)等弧指的是在同圆或等圆中,能够完全重合的弧.长度相等的两条弧,不一定能够完全重合;(2)此弦不能是直径;(3)相等的圆心角所对的弦相等指的是在同圆或等圆中.【详解】解:A、根据圆的轴对称性可知此命题正确,不符合题意;B、等弧指的是在同圆或等圆中,能够完全重合的弧.而此命题没有强调在同圆或等圆中,所以长度相等的两条弧,不一定能够完全重合,此命题错误,符合题意;B、此弦不能是直径,命题错误,符合题意;C、相等的圆心角指的是在同圆或等圆中,此命题错误,符合题意;故选:BCD.【考点】本题考查的是两圆的位置关系、圆周角定理以及垂径定理,熟知平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧是解答此题的关键.7、BCD【解析】【分析】由圆周角定理可得∠ACB=∠AFB=90°,再由E是△ABC的内心可得∠EAB+∠EBA=45°,从而得出∠AEF=45°,进一步得到△ABC是等腰直角三角形,再由垂径定理得EF=EB,从而可得AE=EB,由中位线定理得AE=2OE=2,最后求出.【详解】∵AB为直径,,∴∠ACB=∠AFB=90°,∴∠CAB+∠CBA=180°,∵E是△ABC的内心,∴∠EAB=∠CAB,∠EBA=∠CBA,∴∠EAB+∠EBA=(∠CAB+∠CBA)=45°,故选项B正确,∴∠AEF=∠EAB+∠EBA=45°,∴△AEF是等腰直角三角形,故选项C正确,∴AF=EF,AE=EF,∵,∴EF=EB,∴AE=EB,故选项A错误,∵OA=OB,EF=EB,∴AE=2OE=2,∴EF=BE=2,∴,故选项D正确,故选:BCD【考点】本题主要考查了垂径定理,圆周角定理,中位线定理,三角形内心性质,等腰直角三角形,等知识,证明△ABC是等腰直角三角形是解题的关键.三、填空题1、【解析】【分析】连接AF,由矩形的性质得AD∥BC,AD=BC,由平行线的性质得∠AEF=∠GFE,由折叠的性质得∠AFE=∠GFE,AF=FG,推出∠AEF=∠AFE,则AF=AE,AE=FG,得出四边形AFGE是菱形,则AF∥EG,得出∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB==,即可得出结果.【详解】解:连接AF,如图所示:∵四边形ABCD为矩形,∴AD∥BC,AD=BC,∴∠AEF=∠GFE,由折叠的性质可知:∠AFE=∠GFE,AF=FG,∴∠AEF=∠AFE,∴AF=AE,∴AE=FG,∴四边形AFGE是菱形,∴AF∥EG,∴∠EGF=∠AFB,设BF=2x,则AD=BC=6x,AF=AE=FG=3x,在Rt△ABF中,cos∠AFB===,∴cos∠EGF=,故答案为:.【考点】此题考查的是矩形与折叠问题、菱形的判定及性质、等腰三角形的性质和锐角三角函数,掌握矩形的性质、折叠的性质、菱形的判定及性质、等角对等边和等角的锐角三角函数值相等是解决此题的关键.2、(答案不唯一)【解析】【分析】先根据二次函数的图象和性质取对称轴x=2,设抛物线的解析式为y=a(x-2)2,由于在抛物线对称轴的右边,y随x增大而减小,得出a<0,于是去a=-1,即可解答.【详解】解:设抛物线的解析式为y=a(x-2)2,∵在抛物线对称轴的右边,y随x增大而减小,∴a<0,符合上述条件的二次函数均可,可取a=-1,则y=-(x-2)2.故答案为:y=-(x-2)2.【考点】本题考查了二次函数的图象和性质,解题的关键是掌握二次函数的图象和性质.3、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值.【详解】解:∵二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴当x=2x1+2x2时,y=2×0+2020=0+2020=2020,故答案为:2020.【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.4、5【解析】【分析】根据相似三角形的性质确定两直角边的比值为1:2,以及6×6网格图形中,最长线段为6,进行尝试,可确定、、为边的这样一组三角形满足条件.【详解】解:∵在Rt△ABC中,AC=1,BC=2,∴AB=,AC:BC=1:2,∴与Rt△ABC相似的格点三角形的两直角边的比值为1:2,若该三角形最短边长为4,则另一直角边长为8,但在6×6网格图形中,最长线段为6,但此时画出的直角三角形为等腰直角三角形,从而画不出端点都在格点且长为8的线段,故最短直角边长应小于4,在图中尝试,可画出DE=,EF=2,DF=5的三角形,∵===,∴△ABC∽△DEF,∴∠DEF=∠C=90°,∴此时△DEF的面积为:×2÷2=10,△DEF为面积最大的三角形,其斜边长为:5.故答案为:5.【考点】本题考查了作图-应用与设计、相似三角形的判定和性质、勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考填空题中的压轴题.5、26.【解析】【详解】在Rt△ABC中,根据tan30°=BC:AC,即可求得BC=tan30°×AC=×9m=3m≈5.192m=519.2cm.又因519.2÷20≈26,所以即至少为26阶.6、【解析】【分析】先由角平分线的定义及平行线的性质求得∠EDC=∠ECD,从而EC=DE;再DE∥BC,证得△ADE∽△ABC,然后根据相似三角形的性质列出比例式,求得DE的长,即为EC的长.【详解】解:∵DC为∠ACB的平分线∴∠BCD=∠ECD∵DE∥BC∴∠EDC=∠BCD∴∠EDC=∠ECD∴EC=DE∵AD=8,BD=10∴AB=18∵DE∥BC∴△ADE∽△ABC∴,∵AD=8,AB=18,BC=15∴,∴∴故答案为:【考点】本题考查了角平分线的定义、平行线的性质、等腰三角形的判定及相似三角形的判定与性质,熟练掌握相关性质与定理是解题的关键.7、①②④【解析】【分析】由二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),即可判断①;由抛物线的对称轴为直线x=1,即可判断②;抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,即可判断④,由抛物线开口向下,得到a<0,再由当x=-1时,,即可判断③.【详解】解:∵二次函数y=ax2+bx+c的部分图象与y轴的交点为(0,3),∴c=3,故①正确;∵抛物线的对称轴为直线x=1,∴,即,故②正确;∵抛物线与x轴的一个交点在-1到0之间,抛物线对称轴为直线x=1,∴抛物线与x轴的另一个交点在2到3之间,故④正确;∵抛物线开口向下,∴a<0,∵当x=-1时,,∴即,故③错误,故答案为:①②④.【考点】本题主要考查了二次函数图像的性质,解题的关键在于能够熟练掌握二次函数图像的性质.四、解答题1、△AFD∽△EFB,△ABC∽△ADE;理由见解析.【解析】【分析】根据两个三角形的两组角对应相等,那么这两个三角形互为相似三角形证明即可.【详解】解:△AFD∽△EFB,△ABC∽△ADE.理由如下:∵∠2=∠3,∠AFD=∠EFB∴△AFD∽△EFB,∴∠B=∠D.∵∠1=∠2,∴,∴∠BAC=∠DAE,∴△ABC∽△ADE.【考点】本题考查相似三角形的判定定理,熟记判定定理,本题用到了两组角对应相等的两个三角形互为相似三角形.2、(1),;(2);(3);(4)或.【解析】【分析】(1)根据P点的运动速度和BD的长度即可出结果;(2)画出图象,根据三角形的相似求出各个线段长,即可解决;(3)分情况讨论,矩形与重叠部分面积即为矩形面积减去△ABC外部的小三角形面积,通过三角函数计算出各边长求面积即可;(4)要想使被直线分割成的两部分能拼成不重叠且无缝隙的图形恰好是三角形,则需要被分割的是两个至少有一条相等边长的直角三角形,或者直线正好过正方形一条边的中点,分情况画图求解即可.【详解】解:(1)∵,为的中点,∴,P从B运动到点D所需时间为1s,由题意可知,;(2)如图所示,由题意得,∴,∵,,,∴,∴,由四边形是矩形可知,∠QPD=∠MDP=90°,PQ=DM,即∠APQ=∠BDM=90°,∵∠B=∠B,∠BDM=∠ACB=90°,∴△MDB∽△ACB,∴,即,∴,即∵∠A=∠A,∠APQ=∠ACB=90°,∴△APQ∽△ACB,∴,即,解得;(3)当时,如图,DM交BC于点F,由矩形可知PD∥QM,∴∠FQM=∠B=30°,此时,∴,∴,解得,,同理,,解得,,,当时,如图,DM交BC于点F,QM交BC于E,,由题意可知∠A=60°,,∴,即,,得,∴,∵,∴,,,∴,综上所述:;(4)如图所示,当Q与C重合时,满足条件,由前面解题过程可知此时,当PQ=DM时,此时直线CD正好过QM的中点,满足条件,此时,当直线CD正好过PQ的中点G时,满足条件,如图,由前面计算可知,则,,解得,综上所述,或.【考点】本题考查了动点问题,熟练掌握三角函数,矩形的性质是解题的关键.3、(1)-1;(2)(0,-3)与(2,-3).【解析】【分析】(1)根据抛物线的顶点的纵坐标是−2,可以求得m的值;(2)根据当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,可以求得这两个定点的坐标.【详解】解:(1)∵y=mx2-2mx-3=m(x-1)2-m-3,抛物线的顶点的纵坐标是-2,∴-m-3=-2,解得m=-1,即m的值是-1;(2)∵当m≠0时,无论m为其他何值,每一条抛物线都经过坐标系中的两个定点,当m=1时,y=x2-2x-3;当m=2时,y=2x2-4x-3,∴x2-2x-3=2x2-4x-3.∴x2-2x=0.∴x1=0,x2=2.∴这两个定点为(0,-3)与(2,-3).【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用数形结合的思想和二次函数的性质解答.4、(1)y=﹣10x+540;(2)当销售单价定为37元时,才能使每天的销售利润最大,最大利润是2890元【解析】【分析】(1)设函数关系式为y=kx+b,由销售单价为28元时,每天的销售量为260个;销售单价为30元时,每天的销量为240个;列方程组求解即可;(2)由每天销售利
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025吉林镇赉县鑫阳新能源有限公司招聘工作人员5人笔试题库历年考点版附带答案详解版
- 2025中煤天津设计工程有限责任公司公开招聘6人笔试题库历年考点版附带答案详解
- 2025年烧伤科常见疑难病例诊治模拟演练卷答案及解析
- 2025年服装行业时尚产业链与品牌建设研究报告
- 校园网安全培训规划安排课件
- 2025年教育培训行业在线教育与科技创新研究报告
- 2025年虚拟现实科技行业虚拟现实技术在教育领域应用前景研究报告
- 2025年营销广告行业内容营销策略研究报告
- 2025年数字金融行业金融科技与数字金融发展研究报告
- 2025年社会公益行业公益组织数字化服务创新研究报告
- 2025四川达州宣汉县国有资产管理服务中心县属国有企业招聘劳动合同职工26人笔试历年参考题库附带答案详解
- 新教科版小学1-6年级科学需做实验目录
- 安全生产培训内容
- 酒店设施维护与管理的重要性与实践:延长设备使用寿命降低维修成本
- 老年人认知障碍的早期识别与干预
- 新人教版版PEP小学英语(3-6年级)单词表(带音标)
- 小兵张嘎夺枪记(课本剧)
- 《电子商务法律法规》课程标准
- 医院关于印发《即时检验临床应用管理办法》的通知
- 三年级下册书法练习指导全册教案(湖南美术出版社)
- GB/T 17880.5-1999平头六角铆螺母
评论
0/150
提交评论