




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
青岛版8年级数学下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、下列各组数中,不能够作为直角三角形的三边长的是()A.3,4,5 B.5,12,13 C.6,8,10 D.1,2,32、下列函数中,y是x的正比例函数的是(
)A.y=x B.y=5x﹣1 C.y=x2 D.y=3、下列图形中既是中心对称图形,又是轴对称图形的是(
)A. B. C. D.4、甲、乙两人沿同一条笔直的公路相向而行,甲从地前往地,乙从地前往地.甲先出发3分钟后乙才出发.当甲行驶到6分钟时发现重要物品忘带,立刻以原速的掉头返回地.拿到物品后以提速后的速度继续前往地,二人相距的路程(米)与甲出发的时间(分钟)之间的关系如图所示,下列说法不正确的是(
)A.乙的速度为 B.两人第一次相遇的时间是分钟C.点的坐标为 D.甲最终达到地的时间是分钟5、下列对△ABC的判断,不正确的是(
)A.若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形B.若AB:BC:CA=1:2:,则△ABC是直角三角形C.若AB=BC,∠A=60°,则△ABC是等边三角形D.若AB=BC,∠C=50°,则∠B=50°6、现有四块正方形纸片,面积分别是4,6,8,10,从中选取三块按如图的方式组成图案,若要使所围成的三角形是直角三角形,则要选取的三块纸片的面积分别是(
)A.4,6,8 B.4,6,10 C.4,8,10 D.6,8,107、下列各式中,正确的是(
)A. B. C. D.8、如图,有一块直角三角形纸片,两直角边,.现将直角边沿直线折叠,使它落在斜边上,且与重合,则的大小为(
)A.2cm B.3cm C.4.8cm D.5cm第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在中,,是对角线上的两点,,,,则的度数为______°.2、计算:______.3、D为等腰Rt△ABC斜边BC上一点(不与B、C重合),DE⊥BC于点D,交直线BA于点E,DF交AC于F,连接EF,BD=nDC,当n=_____时,△DEF为等腰直角三角形.4、正方形A1B1C1O,A2B2C2C1,A3BC3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和y轴上,已知点B1(1,1),B2(2,3),则点B3的坐标是_____,点Bn的坐标是_____.5、一次函数y=(k﹣1)x+3的图象上任意不同两点M(x1,y1),N(x2,y2)满足:当x1<x2时,y1<y2.则k的取值范围是_____.6、如图,四边形ABCD和四边形OMNP都是边长为4的正方形,点O是正方形ABCD对角线的交点,正方形OMNP绕点O旋转过程中分别交AB,BC于点E,F,则四边形OEBF的面积为_______.7、如图,已知函数和的图象交于点P,关于的方程组的解是____.三、解答题(7小题,每小题10分,共计70分)1、在△ABC中,∠ACB=90°,AC=BC=10,点D为AB的中点,连结DC.点E以每秒1个单位长度的速度从点A出发,沿射线AC方向运动,连结DE.过点D作DF⊥DE,交射线CB于点F,连结EF.设点E的运动时间为t(秒).(1)如图,当0<t<10时.①求证:∠ADE=∠CDF;②试探索四边形CEDF的面积是否为定值?若为定值,求出这个定值;若不为定值,请说明理由;(2)当t≥10时,试用含t的代数式表示△DEF的面积.2、如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)发现:如图1,连接CE,则△BCE的形状是_______________,∠CDB=____________°;(2)探索:如图2,点P为线段AC上一个动点,当点P在CD之间运动时,连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ,即△BPQ是等边三角形;思路:在线段BD上截取点H,使DH=DP,得等边△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易证△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等边三角形.试判断线段DQ、DP、AD之间的关系,并说明理由;(3)类比:如图3,当点P在AD之间运动时连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ.①试判断△BPQ的形状,并说明理由;②若AD=2,设AP=x,DQ=y,请直接写出y与x之间的函数关系式.3、某邮递公司收费方式有两种:方式一:邮递物品不超过3千克,按每千克2元收费;超过3千克,3千克以内每千克2元,超过的部分按每千克1.5元收费.方式二:基础服务费4元,另外每千克加收1元.小王通过该邮递公司邮寄一箱物品的质量为x千克(x>3).(1)请分别直接写出小王用两种付费方式所需的邮递费用y(元)与x(千克)之间的函数关系式,并在如图所示的直角坐标系中画出图象;(2)若两种付费方式所需邮递费用相同,求这箱物品的质量;(3)若采用“方式二”所需要邮递费用比采用“方式一”便宜5元,求这箱物品的质量.4、如图,在边长为1的小正方形组成的网格中,ABC的三个顶点均在格点上,请按要求完成下列各题.(1)画出ABC关于直线MN对称的A1B1C1;(2)求AB1C的面积;(3)试判断ABC的形状并说明理由.5、解不等式组:.6、如图,已知线段,利用尺规作图的方法作一个正方形,使为正方形的对角线(保留作图痕迹,不要求写作法).7、如图,,分别为锐角边,上的点,把沿折叠,点落在所在平面内的点处.(1)如图1,点在的内部,若,,求的度数.(2)如图2,若,,折叠后点在直线上方,与交于点,且,求折痕的长.(3)如图3,若折叠后,直线,垂足为点,且,,求此时的长.-参考答案-一、单选题1、D【解析】【分析】根据勾股定理的逆定理,逐项判断即可求解.【详解】解:A、因为,所以能够作为直角三角形的三边长,故本选项不符合题意;B、因为,所以能够作为直角三角形的三边长,故本选项不符合题意;C、因为,所以能够作为直角三角形的三边长,故本选项不符合题意;D、因为,所以不能够作为直角三角形的三边长,故本选项符合题意;故选:D【点睛】本题主要考查了勾股定理的逆定理,熟练掌握若一个三角形的两边的平方和等于第三边的平方,则这个三角形是直角三角形是解题的关键.2、A【解析】【分析】根据正比例函数的定义判断即可.【详解】解:A.y=x,是正比例函数,故选项符合题意;B.y=5x﹣1,是一次函数,故选项不符合题意;C.y=x2,是二次函数,故选项不符合题意;D.y=,是反比例函数,故选项不符合题意;故选:A.【点睛】本题考查了正比例函数的定义,熟练掌握正比例函数的定义是解题的关键.形如的函数是正比例函数.3、C【解析】【详解】解:选项A,B中的图形是轴对称图形,不是中心对称图形,故A,B不符合题意;选项C中的图形既是轴对称图形,也是中心对称图形,故C符合题意;选项D中的图形不是轴对称图形,是中心对称图形,故D不符合题意,故选C【点睛】本题考查的是轴对称图形与中心对称图形的识别,把一个图形沿某条直线对折,直线两旁的部分能够完全重合,则这个图形是轴对称图形,把一个图形绕某点旋转后能够与自身重合,则这个图形是中心对称图形,掌握“轴对称图形与中心对称图形的定义”是解本题的关键.4、D【解析】【分析】甲出发3分钟后乙才出发,则AB段表示甲先出发3分钟内两人距离与甲出发时间的关系,故可得B点横坐标为3;BC段表示甲3分钟~6分钟内两人的距离与甲出发时间的关系,故可得点C横坐标为6;CD段两人距离不变,表示两人的速度相等,从而可得乙的速度为甲原来速度的,利用前6分钟的路程等于返回取物品的路程,可求得D点的横坐标,再利用相遇关系可求得第一次相遇的时间,从而也可求得甲最终达到B地的时间,从而确定答案.【详解】由题意知:AB段表示甲先出发3分钟内两人距离与甲出发时间的关系,则;BC段表示甲3分钟~6分钟内两人的距离与甲出发时间的关系,故;CD段两人距离不变,表示两人的速度相等,从而可得乙的速度为甲原来速度的;设甲原来的速度为,提速后的速度为,则乙的速度为甲行驶6分钟后,乙行驶3分钟,两人相距2320米,于是两人共行驶了4000−2320=1680()则得方程:解得:则乙的速度为故A正确甲前3分钟的路程为:3×160=480(),3分钟时甲乙相距故点B的坐标为故C正确设甲6分钟后返回的时间为根据甲6分钟的路程=甲返回取回物品的路程,得方程:解得:t=4∴即10后,甲乙均以速度相向而行,此时两人相距:,两人相遇的时间为:所以甲出发到两人第一次相遇时间为:故B正确甲拿回物品后到达B地需要的时间为:,则甲最终达到B地所需的时间为:故D错误故选:D【点睛】本题考查了函数图象,行程中的相遇问题,解一元一次方程,读懂函数图象并从图象中获取信息,分析运动过程是解答本题的关键和难点.5、D【解析】【分析】根据等腰三角形,等边三角形,直角三角形的判定以及三角形的内角和定理即可作出判断.【详解】解:A.若∠A:∠B:∠C=1:2:3,则∠A=30°,∠B=60°,∠C=90°,所以△ABC是直角三角形,故此选项正确,不符合题意;B.若AB:BC:CA=1:2:,则12+()2=22,那么这个三角形是直角三角形,故此选项正确,不符合题意;C.若AB=BC,∠A=60°,则∠A=∠C=60°,∠B=60°,所以△ABC是等边三角形,故此选项正确,不符合题意;D.若AB=BC,∠C=50°,则∠A=∠C=50°,∠B=80°,故此选项错误,符合题意.故选:D.【点睛】本题考查了等腰三角形的判定、直角三角形的判定以及等边三角形的判定.根据已知条件解出三角形中的角是解题的关键.6、B【解析】【分析】根据勾股定理,直角三角形中两直角边的平方等于斜边的平方,即2个小正方形的面积等于大正方形的面积,据此分析判断即可【详解】解:A.,故该选项不正确,不符合题意;B.,故该选项正确,不符合题意;C.
,故该选项不正确,不符合题意;D.,故该选项不正确,不符合题意;故选B【点睛】本题考查了勾股定理,理解直角三角形中两直角边的平方等于斜边的平方是解题的关键.7、A【解析】【分析】分别根据立方根及算术平方根的定义对各选项进行逐一解答即可.【详解】A、正确,举例:;B、不正确,;C、不正确,左边是算术平方根,应等于12;D、不正确,左边是算术平方根,应等于4.故选:A.【点睛】本题考查立方根,算术平方根,掌握它们的定义是解题的关键.8、B【解析】【分析】根据折叠的性质可得AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,利用勾股定理列式求出AB,从而求出BE,设CD=DE=x,表示出BD,然后在Rt△DEB中,利用勾股定理列式计算即可得解.【详解】解:由折叠的性质可得,AC=AE=6,CD=DE,∠ACD=∠AED=∠DEB=90°,在Rt△ABC中,AB2=AC2+BC2=62+82=102,∴AB=10,∴BE=AB-AE=10-6=4,设CD=DE=x,则DB=BC-CD=8-x,在Rt△DEB中,由勾股定理,得x2+42=(8-x)2,解得x=3,即CD=3cm,故选:B.【点睛】本题考查了翻折变换的性质,以及勾股定理,熟记性质并表示出Rt△DEB的三边,然后利用勾股定理列出方程是解题的关键.二、填空题1、23【解析】【分析】根据平行四边形的性质可得∠DAC=∠ACB,再由,可得∠DAC=∠ADE,∠ACD=∠DEC,然后根据三角形外角的性质可得∠ACD=2∠DAC=2∠ACB,再根据,即可求解.【详解】解:在中,AD∥BC,∴∠DAC=∠ACB,∵,,∴,∴∠DAC=∠ADE,,∴∠ACD=∠DEC,∵∠DEC=∠DAC+∠ADE,∴∠ACD=2∠DAC=2∠ACB,∵,∴∠ACD+∠ACB=69°,∴3∠DAC=69°,∴∠DAC=23°.故答案为:23【点睛】本题主要考查了平行四边形的性质,等腰三角形的性质,三角形外角的性质,直角三角形的性质,熟练掌握平行四边形的性质,等腰三角形的性质,三角形外角的性质,直角三角形的性质是解题的关键.2、6【解析】【分析】应用负整数指数幂和开平方运算的法则即可求解.【详解】解:==6故答案为:6【点睛】考查了负整数指数幂、算术平方根的运算法则,熟练掌握运算法则是正确解答的关键.3、或1【解析】【分析】分两种情况:情况①:当∠DEF=90°时,由题意得出EF∥BC,作FG⊥BC于G,证出△CFG、△BDE是等腰直角三角形,四边形EFGD是正方形,得出BD=DE=EF=DG=FG=CG,即可得出结果;情况②:当∠EFD=90°时,求出∠DEF=45°,得出E与A重合,D是BC的中点,BD=CD,即可得出结果.【详解】解:分两种情况:情况①:当∠DEF=90°时,如图1所示:∵DE⊥BC,∴∠BDE=90°=∠DEF,∴EF∥BC,作FG⊥BC于G,∴∠EDB=∠FGB=90°,∴ED∥FG,∴四边形EDGF为矩形,∵△ABC是等腰直角三角形,∴△CFG、△BDE是等腰直角三角形,∴BD=DE,当△DEF为等腰直角三角形时,DE=EF,此时四边形EFGD是正方形,∴BD=DE=EF=DG=FG=CG,∴BD=DC,∴n=;情况②:当∠EFD=90°时,如图2所示:∵∠EDF=45°,∴∠DEF=45°,此时E与A重合,D是BC的中点,∴BD=CD,∴n=1.故答案为:或1.【点睛】本题考查了等腰直角三角形的判定与性质、平行线的判定、正方形的判定与性质;熟练掌握等腰直角三角形的性质,分两种情况讨论是解决问题的关键.4、
(4,7)
(2n-1,2n-1)【解析】【分析】先由点B1(1,1)得到点A1的坐标,然后由B2(2,3)得到A2的坐标,进而得到直线的解析式,再令y=3求得点A3的坐标,从而求得点B3的坐标,⋯,再依次求得点Bn的坐标.【详解】解:∵点B1(1,1),B2(2,3),∴点A1(1,0),A2(2,1),将点A1(1,0),A2(2,1)代入y=kx+b得,,解得:,∴直线的解析式为y=x-1,令y=3得,x-1=3,∴x=4,∴点A3的坐标为(4,3),∴A3B3=4,∴B3的坐标为(4,7),令y=7得,x-1=7,∴x=8,∴点A4的坐标为(8,7),∴A4B4=8,∴B4的坐标为(8,15),⋯,∴点Bn的坐标为(2n-1,2n-1),故答案为:(4,7),(2n-1,2n-1).【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质,解题的关键是通过一次函数图象上点的坐标特征求得系列点B的坐标.5、【解析】【分析】根据一次函数的增减性列出不等式求解即可.【详解】解:∵当x1<x2时,y1<y2.∴y随x的增大而增大,∴k-1>0解得k>1.故答案为:k>1【点睛】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,解题的关键是牢记“当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小”.6、4【解析】【分析】根据正方形的性质得到OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,推出∠BOE=∠COF,根据全等三角形的判定定理得到△BOE≌△COF(ASA),于是得到结论.【详解】解:∵四边形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠BOE=90°,∴∠BOE=∠COF,在△BOE和△COF中,,∴△BOE≌△COF(ASA),∴S四边形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD=×4×4=4,故答案为:4.【点睛】本题考查了旋转的性质,正方形的性质,全等三角形的判定和性质,熟练掌握全等三角形的判定和性质定理是解题的关键.7、【解析】【分析】根据函数与方程组的关系结合交点坐标即可求得方程组的解.【详解】解:∵一次函数y=ax+b(a≠0)和y=kx(k≠0)的图象交于点P(-4,-2),∴二元一次方程组的解是,故答案为:.【点睛】本题主要考查了一次函数图象与二元一次方程组的关系,函数图象交点坐标为两函数解析式组成的方程组的解.三、解答题1、(1)①见解析;②是,25(2)【解析】【分析】(1)①利用等腰三角形的三线合一的性质证明即可;②结论:四边形CEDF的面积为定值.证明△ADE≌△CDF(ASA),可得结论;(2)当t≥10时,点E在AC的延长线上.过点D分别作DG⊥BC,DH⊥AC,垂足分别为点G,H.证明△DBF≌△DCE(ASA),推出BF=CE=t﹣10,CF=CB+BF=10+(t﹣10)=t.再根据S△DEF=S四边形DCEF﹣S△DCE,求解即可.(1)证明:(1)①∵AC=BC,点D为AB的中点,∴CD⊥AB,∵DF⊥DE,∴∠ADE+∠CDE=∠CDF+∠CDE=90°,∴∠ADE=∠CDF;②结论:四边形CEDF的面积为定值,理由如下:∵AC=BC,点D为AB的中点,∠ACB=90°,∴∠A=∠B=∠ACD=∠BCD=45°,,∴AD=BD=CD,∵∠ADE=∠CDF,∴△ADE≌△CDF(ASA),∴S△ADE=S△CDF,∴S四边形CEDF=S△CDE+S△CDF=S△CDE+S△ADE=S△ACD=.∴四边形CEDF的面积为定值.(2)解:当t≥10时,点E在AC的延长线上.过点D分别作DG⊥BC,DH⊥AC,垂足分别为点G,H.∵∠FDC=∠FDE+∠CDE=∠BDC+∠BDF,∴∠BDF=∠CDE.由②得:AD=BD=CD,∠ABC=∠ACD=45°,∴∠DBF=∠DCE=135°,∴△DBF≌△DCE(ASA),∴BF=CE=t﹣10,∴CF=CB+BF=10+(t﹣10)=t.∵,DG⊥BC,DH⊥AC,∴,∵AD=BD=CD,AC=BC=10,∴DG=DH=5.∵=,∴.【点睛】本题主要考查了等腰三角形的判定和性质,角平分线的性质定理,直角三角形的性质,全等三角形的判定和性质,熟练掌握相关知识点是解题的关键.2、(1)等边三角形,60;(2)AD=DQ+DP,见解析;(3)①△BPQ是等边三角形,见解析;②y=-x+4【解析】【分析】(1)根据直角三角形的两锐角互余求得∠ABC=60°,再根据角平分线的定义求得∠ABD=∠CBD=∠A=30°,则AD=BD,根据等腰三角形的性质证得AE=BE,再由直角三角形斜边上的中线性质得出CE=BE,根据等边三角形的判定即可得出结论;(2)根据思路和全等三角形的性质得出BH=DQ,结合AD=BD,BD=DH+BH即可解答;(3)延长BD至F,使DF=PD,连接PF,可证得△PDF是等边三角形,则有PF=PD,∠F=∠PDF=∠DPF=60°,进而可得∠F=∠PDQ=60°,证明∠BPF=∠QPD,利用ASA证明△PBF≌△PQD,得出PB=PQ,BF=DQ,结合∠BPQ=60°和AD=BD即可得出①②的结论.(1)解:如图1,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=∠ABC=30°,∴∠ABD=∠A,∠CDB=90°-∠CBD=60°,∴AD=BD,又DE⊥AB,∴AE=BE=AB,又∠ACB=90°,∴CE=AB=BE,又∠ABC=60°,∴△BCE是等边三角形,故答案为:等边三角形,60;(2)解:AD=DQ+DP,理由为:在线段BD上截取点H,使DH=DP,如图2,∵∠CDB=60°,∴△DPH为等边三角形,∴DP=PH,∠DPH=∠DHP=60°,又∠BPQ=60°,∴∠DPQ+∠QPH=∠HPB+∠QPH=60°,∠BHP=120°,∴∠DPQ=∠HPB,∵∠A=30°,DE⊥AB,∴∠QDP=∠A+∠AED=30°+90°=120°,∴∠QDP=∠BHP,在△PDQ≌△PHB中,∴△PDQ≌△PHB(ASA),∴DQ=BH,PQ=PB,∵AD=BD,∠BPQ=60°,∴△BPQ为等边三角形,AD=BD=BH+DH=DQ+DP,即AD=DQ+DP;(3)解:①△BPQ为等边三角形,理由为:延长BD至F,使DF=DP,连接PF,设DQ和BP相交于O,如图3,∵∠PDF=∠CDB=60°,∴△PDF为等边三角形,∴PF=DP,∠F=∠PDF=∠DPF=60°,∵∠A=30°,DE⊥AB,
∴∠PDQ=90°-∠A=60°,∴∠F=∠PDQ=60°,∵∠DPF+∠DPB=∠BPQ+∠DPB,又∠BPQ=60°,∴∠BPF=∠QPD,在△PBF和△PQD中,,∴△PBF≌△PQD(ASA),∴PB=PQ,BF=DQ,又∠BPQ=60°,∴△BPQ为等边三角形;②∵DF=DP,BF=DQ,AD=BD,∴DQ=BF=BD+DF=AD+DP,∵AD=2,AP=x,DQ=y,∴y=2+2-x,即y=-x+4.【点睛】本题考查含30°角的直角三角形的性质、直角三角形斜边上的中线性质、角平分线的定义、等腰三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形的外角性质等知识,知识点较多,综合性强,熟练掌握相关知识的联系和运用,利用类比的方法解决问题是解答的关键.3、(1),,见解析(2)5千克(3)15千克【解析】【分析】(1)根据题意,可以写出两种付费方式所需的邮递费用y(元)与x(千克)之间的函数关系式,并在直角坐标系中画出图象;(2)根据题意和(1)中的函数解析式,令它们的函数值相等,求出相应的x的值即可;(3)根据题意,可以列出相应的方程,然后求解即可.(1)由题意可得,方式一:所需的邮递费用y(元)与x(千克)之间的函数关系式是y=3×2+(x−3)×1.5=1.5x+1.5,当x=4时,y=7.5,当x=5时,y=9;方式二:所需的邮递费用y(元)与x(千克)之间的函数关系式是y=x+4,当x=4时,y=8,当x=5时,y=9;它们的函数图象如图所示:(2)由题意可得:1.5x+1.5=x+4,解得x=5,答:两种付费方式所需邮递费用相同,这箱物品的质量是5千克.(3)由题意可得:(1.5x+1.5)−(x+4)=5,解得x=15,答:这箱物品的质量是15千克.【点睛】本题考查一次函数的应用、一元一次方程的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年城市供水项目财务监管与服务协议
- 2025年主题餐厅吧台特色饮品研发与品牌授权合作协议
- 2025年抖音平台内容创作者专属许可与推广服务合同
- 2025年高品质员工宿舍租赁及公共区域智能化维护合同
- 2025年智能照明系统改造工程合同-北京展览馆专用版
- 2025年家庭财产分割及子女抚养权变更调解协议书
- 2025年绿色食材供应合作餐饮连锁原料采购合同
- 2025年离婚协议书撰写及风险评估专项服务合同
- 2025年智慧社区公共区域清洁与消毒服务外包协议
- 二零二五年度网络文学版权购买与改编合同
- 合同的订立与有效性
- 梁的弯曲振动-振动力学课件
- 钢结构长廊施工方案
- 临床检验专业医疗质量控制指标(2015版)
- 信保业务自查问题统计表
- 2023年大学试题(大学选修课)-创业:道与术考试历年真摘选题含答案
- 心理健康评定量表
- 河道修防工高级工试题
- 女性生殖脏器
- 保障农民工工资支付协调机制和工资预防机制
- 流体力学的课件
评论
0/150
提交评论