版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省化州市中考数学真题分类(平行线的证明)汇编同步训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在四边形ABCD中,如果∠B+∠C=180°,那么
()A.AB∥CD B.AD∥BC C.AB与CD相交 D.AB与DC垂直2、下列命题:①对顶角相等;②同位角相等,两直线平行;③若|a|=|b|,则a=b;④若x=2,则2|x|-1=3.以上命题是真命题的有(
).A.①②③④ B.①④ C.②④ D.①②④3、用反证法证明命题“三角形中必有一个内角小于或等于60°”时,首先应该假设这个三角形中()A.有一个内角小于60° B.每一个内角都小于60°C.有一个内角大于60° D.每一个内角都大于60°4、下列命题中,假命题是(
)A.正方形都相似 B.对角线和一边对应成比例的矩形相似C.等腰直角三角形都相似 D.底角为60°的两个等腰梯形相似5、给定下列条件,不能判定三角形为直角三角形的是(
)A.∠A:∠B:∠C=1∶2∶3 B.∠A+∠B=∠CC. D.∠A=2∠B=3∠C6、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等边三角形 B.锐角三角形 C.钝角三角形 D.直角三角形7、如图所示,下列推理及括号中所注明的推理依据错误的是(
)A.,(内错角相等,两直线平行)B.,(两直线平行,同旁内角互补)C.,(两直线平行,同旁内角互补)D.,(同位角相等,两直线平行)8、在中,,则为(
)三角形.A.锐角 B.直角 C.钝角 D.等腰第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在ΔABC中,E、F分别是AB、AC上的两点,∠1+∠2=235°,则∠A=____度.2、如图,将三角形纸片ABC沿EF折叠,使得A点落在BC上点D处,连接DE,DF,.设,,则α与β之间的数量关系是________.3、如图,将直角三角形纸片ABC进行折叠,使直角顶点A落在斜边BC上的点E处,并使折痕经过点C,得到折痕CD.若∠CDE=70°,则∠B=______°.4、如图,则∠A+∠B+∠C+∠D+∠E的度数是__.5、下列说法:(1)两点之间的所有连线中,线段最短;(2)相等的角是对顶角;(3)过一点有且仅有一条直线与已知直线平行;(4)长方体是四棱柱.其中正确的有______(填正确说法的序号).6、如图,四边形ABCD中,点M,N分别在AB,BC上,将沿MN翻折,得△FMN,若MF∥AD,FN∥DC,则∠B=___°.7、如图,当∠ABC,∠C,∠D满足条件______________时,AB∥ED.三、解答题(7小题,每小题10分,共计70分)1、已知:如图,EF∥CD,.(1)判断与的位置关系,并说明理由.(2)若平分,平分,且,求的度数.2、(1)如图(a),BD平分,CD平分.试确定和的数量关系.(2)如图(b),BE平分,CE平分外角.试确定和的数量关系.(3)如图(c),BF平分外角,CF平分外角.试确定和的数量关系.3、(1)在锐角中,边上的高所在直线和边上的高所在直线的交点为,,求的度数.(2)如图,和分别平分和,当点在直线上时,且B、P、D三点共线,,则_________.(3)在(2)的基础上,当点在直线外时,如下图:,,求的度数.4、如图,平分,与相交于F,,求证:.5、如图,在中,,点D在线段BC上运动(D不与B、C重合),连接AD,作,DE交线段AC于E.(1)点D从B向C运动时,逐渐变__________(填“大”或“小”),但与的度数和始终是__________度.(2)当DC的长度是多少时,,并说明理由.6、已知:如图,.求证:.分析:如图,欲证,只要证______.证明:,(已知)又,(
)__________.(
).(__________,____________)7、如图,已知AB⊥BC,BC⊥CD,.求证:BE∥CF-参考答案-一、单选题1、A【解析】【分析】∠B与∠C是直线AB,CD被直线BC所截构成的同旁内角,根据∠B+∠C=180°,得到AB∥CD.【详解】∵∠B+∠C=180°,∴AB∥CD(同旁内角互补,两直线平行).故选A.【考点】正解找出“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.2、D【解析】【分析】对于①,根据对顶角的性质即可判断命题正误;对于②,根据平行线的判定定理判断命题的正误;对于③,根据绝对值的性质知a=b,据此判断命题③的正误;对于④,把x=2代入2|x|-1可得2|x|-1=3,据此判断命题的正误,综上可选出正确答案.【详解】解:对于①,由对顶角的性质知,对顶角相等,故命题①为真命题;对于②,同位角相等,两直线平行,故命题②为真命题;对于③,如果|a|=|b|,则a=b,故命题③为假命题;对于④,若x=2,则2|x|-1=3,故④为真命题.综上可知,命题是真命题的有①②④.故选D.【考点】本题主要考查命题,熟知平行线及绝对值等各知识是解题的关键.3、D【解析】【分析】根据反证法的证明步骤解答即可.【详解】解:用反证法证明“三角形中必有一个内角小于或等于60°”时,应先假设三角形中每一个内角都不小于或等于60°,即每一个内角都大于60°.故选:D.【考点】本题考查反证法,熟知反证法的证明步骤,正确得出原结论的反面是解答的关键.4、B【解析】【分析】根据命题的定义判断真假即可;【详解】B没说清楚一边是矩形的长还是宽;故答案选B.【考点】本题主要考查了命题的知识点,准确判断是解题的关键.5、D【解析】【分析】根据三角形的内角和等于180°求出最大角,然后选择即可.【详解】解:A、最大角∠C=×180°=90°,是直角三角形,不符合题意;B、最大角∠C=180°÷2=90°,是直角三角形,不符合题意;C、设∠A=x,则∠B=2x,∠C=3x,所以,x+2x+3x=180°,解得x=30°,最大角∠C=3×30°=90°,是直角三角形,不符合题意;D、设∠A=x,则∠B=x,∠C=x,所以,,解得,是钝角三角形,符合题意.故选:D.【考点】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.6、D【解析】【分析】由于∠A-∠C=∠B,再结合∠A+∠B+∠C=180°,易求∠A,进而可判断三角形的形状.【详解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选D.【考点】本题考查了三角形内角和定理,求出∠A的度数是解题的关键.7、C【解析】【分析】依据内错角相等,两直线平行;两直线平行,内错角相等;两直线平行,同旁内角互补;同位角相等,两直线平行进行判断即可.【详解】解:.,(内错角相等,两直线平行),正确;.,(两直线平行,同旁内角互补),正确;.,(两直线平行,同旁内角互补),故选项错误;.,(同位角相等,两直线平行),正确;故选:C.【考点】本题主要考查了平行线的性质与判定,平行线的判定是由角的数量关系判断两直线的位置关系,平行线的性质是由平行关系来寻找角的数量关系.8、B【解析】【分析】根据分别设出三个角的度数,再根据三角形的内角和为180°列出一个方程,解此方程即可得出答案.【详解】∵∴可设∠A=x,∠B=2x,∠C=3x根据三角形的内角和可得:x+2x+3x=180°解得:x=30°∴∠A=30°,∠B=60°,∠C=90°因此△ABC是直角三角形故答案选择B.【考点】本题主要考查的是三角形的基本概念.二、填空题1、55【解析】【分析】根据三角形内角和定理可知,要求∠A只要求出∠AEF+∠AFE的度数即可.【详解】∵∠1+∠AEF=180°,∠2+∠AFE=180°,∴∠1+∠AEF+∠2+∠AFE=360°,∵∠1+∠2=235°,∴∠AEF+∠AFE=360°−235°=125°,∵在△AEF中:∠A+∠AEF+∠AFE=180°(三角形内角和定理)∴∠A=180°−125°=55°,故答案为:55°【考点】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A所在的三角形是关键.2、【解析】【分析】由折叠的性质可知:,再利用三角形内角和定理及角之间的关系证明,,即可找出α与β之间的数量关系.【详解】解:由折叠的性质可知:,∵,∴,∴,∵,,∴,∴,故答案为:.【考点】本题考查折叠的性质,三角形内角和定理,解题的关键是根据折叠的性质求出,根据角之间的关系求出,.3、50【解析】【分析】根据折叠的性质求得∠CDE=∠CDA=70°,得到∠BDE=40°,再利用余角的性质即可求解.【详解】解:根据折叠的性质得:∠CDE=∠CDA=70°,∠CED=∠A=90°,∴∠BDE=180°-70°-70°=40°,∠BED=180°-90°=90°,∴∠B=180°-90°-40°=50°,故答案为:50.【考点】本题考查翻折变换,三角形内角和定理等知识,关键是根据翻折前后对应角相等,利用三角形内角和定理求解即可.4、180°【解析】【分析】由三角形的一个外角等于与它不相邻的两个内角的和,得∠4=∠A+∠2,∠2=∠D+∠C,进而利用三角形的内角和定理求解.【详解】解:如图可知:∵∠4是三角形的外角,∴∠4=∠A+∠2,同理∠2也是三角形的外角,∴∠2=∠D+∠C,在△BEG中,∵∠B+∠E+∠4=180°,∴∠B+∠E+∠A+∠D+∠C=180°.故答案为:180°.【考点】本题考查三角形外角的性质及三角形的内角和定理,解答的关键是沟通外角和内角的关系.5、(1)、(4).【解析】【分析】根据所学公理和性质解答即可.【详解】解:(1)两点之间的所有连线中,线段最短,故本说法正确;(2)相等的角不一定是对顶角,但对顶角相等,故本说法错误;(3)应为过直线外一点有且仅有一条直线与已知直线平行,故本说法错误;(4)长方体是四棱柱,正确.故答案为(1)、(4).【考点】本题是对数学语言的严谨性的考查,记忆数学公理、性质概念等一定要做的严谨.6、95【解析】【详解】∵MF//AD,FN//DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°.∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°.在△BMN中,∠B=180°-(∠BMN+∠BNM)=180°-(50°+35°)=180°-85°=95°.故答案为:957、∠ABC=∠C+∠D【解析】【分析】延长CB交DE于F,根据三角形的一个外角等于与它不相邻的两个内角的和求出∠EFB=∠C+∠D,再根据同位角相等,两直线平行解答即可.【详解】如图,延长CB交DE于F,则∠EFB=∠C+∠D,当∠ABC=∠EFB时,AB∥ED,所以,当∠ABC=∠C+∠D时,AB∥ED.故答案为∠ABC=∠C+∠D.【考点】本题考查了平行线的判定,作辅助线,把∠C、∠D转化为一个角的度数是解题的关键.三、解答题1、(1)平行,理由见解析;(2)80°【解析】【分析】(1)根据可得,再由可得由此即可证明;(2)由平行线的性质可得,再由角平分线的定义可得,则,由此即可得到答案.【详解】解:(1).理由:,,又,,;(2),,平分,,∴,平分,.【考点】本题主要考查了平行线的性质与判定,角平分线的定义,解题的关键在于能够熟练掌握平行线的性质与判定条件以及角平分线的定义.2、(1);(2);(3)【解析】【分析】(1)根据三角形的内角和定理以及角平分线的定义即可确定和的数量关系;(2)根据三角形的外角性质以及角平分线的定义可得,进而可得和的数量关系;(3)根据三角形的内角和定理可得,,结合角平分线的定义,根据即可确定和的数量关系.【详解】(1)在中,.在中,.∵,,∴;(2)在中,.在中,.∵,,∴.(3)在中,.在中,.∵,.,,∴.【考点】本题考查了三角形的内角和定理,三角形的外角性质,角平分线的定义,熟练掌握以上知识是解题的关键.3、(1);(2);(3).【解析】【分析】(1)根据对顶角相等以及四边形的内角和进行判断即可;(2)法一:根据以及和分别平分和,算出和,从而算出;法二:根据三角形的外角定理得到∠APC=∠B+∠PAB+∠PCB,再求出∠PAB+∠PCB,故可求解;(3)法一:连接AC,根据三角形的内角和与角平分线的性质分别求出,,故可求解;法二:连接BD并延长到G根据三角形的外角定理得到∠ADC=∠2+∠4+∠APC,再求出∠2+∠4,故可求解.【详解】(1)如图边上的高所在直线和边上的高所在直线的交点为∴又∵∴∵在四边形中,内角和为∴.(2)法一:∵和分别平分和∴又∵∴∴∴.法二:连接BD,∵B、P、D三点共线∴BD、AF、CE交于P点∵∠APD=∠BAP+∠ABP,∠CPD=∠BCP+∠CBP,∴∠APC=∠B+∠PAB+∠PCB∵和分别平分和,∴∠PAC=∠PAB,∠PCA=∠PCB,∵∠APC=100°,∴∠PAC+∠PCA=180°−100°=80°,∴∠PAB+∠PCB=80°,∴∠B=∠APC−(∠PAB+∠PCB)=100°−80°=20°.(3)法一:如图:连接AC∵,∴∴又∵和分别平分和∴∴∴.法二:如图,连接BD并延长到G,∵∠ADG=∠2+∠APD,∠CDG=∠4+∠CPD,∴∠ADC=∠2+∠4+∠APC,∴∠2+∠4=30°同理可得∠APC=∠1+∠3+∠B,∠1=∠2,∠3=∠4,∴∠B=∠APC-∠2-∠4=100°-30°=70°∴∠B=70°.【考点】本题考查三角形的外角,角平分线的定义,三角形内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.4、见解析【解析】【分析】由AB∥CD,可知∠1=∠CFE;由AE平分∠BAD,得到∠1=∠2,再由已知可得∠2=∠E,即可证明AD∥BC.【详解】解:∵AB∥CD,∴∠1=∠CFE,∵AE平分∠BAD,∴∠1=∠2,∵∠CFE=∠E,∴∠2=∠E,∴AD∥BC.【考点】本题考查角平分线的性质以及平行线的判定定理.关键是利用平行线的性质以及角平分线的性质解答.5、(1)小;140(2)当DC=2时,△ABD≌△DCE,理由见解析【解析】【分析】(1)利用三角形的内角和即可得出结论;(2)当DC=2时,利用∠DEC+∠EDC=140°,∠ADB+∠EDC=140°,求出∠ADB=∠DEC,再利用AB=DC=2,即可得出△AB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 绿色建筑市场分析与前景展望
- 厂家保养维修合同范本
- 北京幼师劳动合同范本
- 古房老屋出售合同范本
- 保险理赔劳动合同范本
- 合同数量不足补充协议
- 农村楼房兄弟共协议书
- 公司间债务偿还协议书
- 公园维修管道合同范本
- 厂区木材收购合同范本
- 甜水园吉野家餐厅合同7篇
- 2025年丽水市属企业面向残疾人公开招聘工作人员7人考试参考试题及答案解析
- 镇江市2025年度专业技术人员继续教育公需科目考试题库(附答案)
- 2024年蚌埠五河县事业单位选调工作人员考试真题
- 亨利八世课件
- 2025年农险初级核保考试题库
- 大学生创新创业基础(创新创业课程)完整全套教学课件
- 设备外协加工维修单
- 《热辐射》(课件)苏教版五年级科学上册
- 釜类设备安装检验记录
- 桩基工程计量与计价-预制桩(建筑工程计量与计价)
评论
0/150
提交评论