




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学8年级上册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、下列说法正确的是(
)①近似数精确到十分位;②在,,,中,最小的是;③如图所示,在数轴上点所表示的数为;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角”;⑤如图,在内一点到这三条边的距离相等,则点是三个角平分线的交点.A.1 B.2 C.3 D.42、在下列各数中是无理数的有(
),,,,,(相邻两个之间有个),,.A.个 B.个 C.个 D.个3、下图所示的五角星是用螺栓将两端打有孔的5根木条连接构成的图形,它的形状不稳定,如果在木条交叉点打孔加装螺栓的办法使其形状稳定,那么至少需要添加(
)个螺栓A.1 B.2C.3 D.44、一直角三角形的三边分别为2、3、x,那么x为().A. B. C.或 D.无法确定5、计算下列各式,值最小的是(
)A.2×0+1−9 B. C. D.6、工人师傅常常利用角尺构造全等三角形的方法来平分一个角.如图,在的两边、上分别在取,移动角尺,使角尺两边相同的刻度分别与点、重合,这时过角尺顶点的射线就是的平分线.这里构造全等三角形的依据是(
)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、下列命题中,真命题为(
)A.等腰三角形两腰上的高相等B.三角形的中线都是过三角形的某一个顶点,且平分对边C.在△ABC中,若∠A=∠B-∠C,则△ABC是直角三角形D.等腰三角形的高、中线、角平分线互相重合2、下列各式计算不正确的是(
)A. B. C. D.3、下列等式不成立的是(
)A. B. C. D.4、已知关于x的分式方程无解,则m的值为(
)A.0 B. C. D.5、下列运算错误的是(
)A.(﹣2xy﹣1)﹣3=6x3y3 B.C.=5a3 D.(-x)7÷x2=-x56、如图,已知,下列结论正确的有()A. B. C. D.△≌△7、在直角坐标系中,等边三角形的顶点A,B的坐标分别是,,则顶点C的坐标可能是(
)A. B. C. D.第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、对于任意不相等的两个数a,b,定义一种运算※如下:,如.那么______.2、已知,当分别取1,2,3,……,2020时,所对应值的总和是__________.3、如图,将一个长方形纸片沿折叠,使C点与A点重合,若,则线段的长是_________.4、如图,在矩形ABCD中,AB=8cm,AD=12cm,点P从点B出发,以2cm/s的速度沿BC边向点C运动,到达点C停止,同时,点Q从点C出发,以vcm/s的速度沿CD边向点D运动,到达点D停止,规定其中一个动点停止运动时,另一个动点也随之停止运动.当v为______时,△ABP与△PCQ全等.5、若关于x的方程无解,则m的值为__.6、若,则的值等于_______.7、如图,若△ABC≌△ADE,且∠1=35°,则∠2=_____.四、解答题(6小题,每小题10分,共计60分)1、如图,在中,.点是中点,点为边上一点,连接,以为边在的左侧作等边三角形,连接.(1)的形状为______;(2)随着点位置的变化,的度数是否变化?并结合图说明你的理由;(3)当点落在边上时,若,请直接写出的长.2、如图,BC⊥AD,垂足为点C,∠A27°,∠BED44°.求:(1)∠B的度数;(2)∠BFD的度数.3、计算:(1)当x为何值时,分式的值为0(2)当x=4时,求的值4、计算(1)(2)5、如图,已知△ABC.求作:BC边上的高与内角∠B的角平分线的交点.6、计算:(1)(2)-参考答案-一、单选题1、B【解析】【分析】根据近似数的精确度定义,可判断①;根据实数的大小比较,可判断②;根据点在数轴上所对应的实数,即可判断③;根据反证法的概念,可判断④;根据角平分线的性质,可判断⑤.【详解】①近似数精确到十位,故本小题错误;②,,,,最小的是,故本小题正确;③在数轴上点所表示的数为,故本小题错误;④用反证法证明命题“一个三角形最多有一个钝角”时,首先应假设“这个三角形中有两个钝角或三个钝角”,故本小题错误;⑤在内一点到这三条边的距离相等,则点是三个角平分线的交点,故本小题正确.故选B【考点】本题主要考查近似数的精确度定义,实数的大小比较,点在数轴上所对应的实数,反证法的概念,角平分线的性质,熟练掌握上述知识点,是解题的关键.2、B【解析】【分析】根据无理数是无限不循小数,可得答案.【详解】解:,,,是无理数,故选:B.【考点】本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.3、A【解析】【分析】用木条交叉点打孔加装螺栓的办法去达到使其形状稳定的目的,可用三角形的稳定性解释.【详解】如图,A点加上螺栓后,根据三角形的稳定性,原不稳定的五角星中具有了稳定的各边故答案为:A.【考点】本题考查了三角形的稳定性的问题,掌握三角形的稳定性是解题的关键.4、C【解析】【分析】分类讨论当3为斜边时和x为斜边时,利用勾股定理列出等式即可解题.【详解】解:当3为斜边时,32=22+x2,解得:x=,当x为斜边时,x2=32+22,解得:x=,∴x为或,故选C.【考点】本题考查了勾股定理的实际应用,中等难度,分类讨论是解题关键.5、A【解析】【分析】根据实数的运算法则,遵循先乘除后加减的运算顺序即可得到答案.【详解】根据实数的运算法则可得:A.;B.;C.;D.;故选A.【考点】本题考查实数的混合运算,掌握实数的混合运算顺序和法则是解题的关键..6、D【解析】【分析】根据全等三角形的判定条件判断即可.【详解】解:由题意可知在中∴(SSS)∴∴就是的平分线故选:D【考点】本题考查全等三角形的判定及性质、角平分线的判定、熟练掌握全等三角形的判定是关键.二、多选题1、ABC【解析】【分析】根据三角形的面积,等腰三角形三线合一的性质,三角形中线的定义对各选项分析判断后利用排除法求解.【详解】解:A、根据三角形的面积两腰相等,所以腰上的高相等,故原命题为真命题;B、三角形的中线都是过三角形的某一个顶点,且平分对边,故原命题为真命题;C、在△ABC中,若∠A=∠B-∠C,即∠A+∠C=∠B,∵∠A+∠B+∠C=180,∴2∠B=180,即∠B=90,则△ABC是直角三角形,故原命题为真命题;D、等腰三角形底边上的高、底边上的中线、顶角的角平分线互相重合,故原命题为假命题;故选:ABC.【考点】本题综合考查了等腰三角形的性质、三角形中线的定义、三角形内角和定理,熟练掌握并灵活运用这些知识是解决本题的关键.2、BCD【解析】【分析】解答此题根据二次根式的性质进行化简即可.【详解】解:A、,故此选项不符合题意;B、,故此选项符合题意;C、,故此选项符合题意;D、,故此选项符合题意;故选BCD.【考点】本题主要考查了二次根式的化简,解答此题的关键是熟练掌握二次根式的基本运算法则.3、ABC【解析】【分析】根据二次根式的性质以及二次根式的乘除法法则进行判断即可.【详解】解:A、,当,时,,故此选项符合题意;B、当,时,和没有意义,故此选项符合题意;C、当,时,和没有意义,故此选项符合题意;D、∵,∴,∴要使有意义,则,∴故此选项不符合题意;故选ABC.【考点】此题主要考查了二次根式的性质以及二次根式的乘除法,熟练掌握运算法则是解答此题的关键.4、ABD【解析】【分析】先将分式方程化为整式方程,再由原分式方程无解,可得或,即可求解.【详解】解:化为整式方程,得:,即,∵关于x的分式方程无解,∴或,当时,,当,即或时,或,解得:或.故选:ABD.【考点】本题主要考查了分式方程无解的问题,理解并掌握分式方程无解分为两种情况:分式方程产生增根;整式方程本身无解是解题的关键.5、AB【解析】【分析】根据负整数指数幂,同底数幂的除法和含乘方的计算法则进行求解判断即可【详解】解:A、,故此选项符合题意;B、,故此选项符合题意;C、,故此选项不符合题意;D、,故此选项不符合题意;故选AB.【考点】本题主要考查了负整数指数幂,同底数幂的除法和含乘方的计算,解题的关键在于能够熟练掌握相关计算法则.6、ACD【解析】【分析】只要证明△ABE≌△ACF,△ANC≌△AMB,利用全等三角形的性质即可一一判断.【详解】解:在△ABE和△ACF中,,∴△ABE≌△ACF(AAS),∴∠BAE=∠CAF,BE=CF,AB=AC,∴∠BAE−∠BAC=∠CAF−∠BAC,即∠1=∠2,∴,故C正确;在△ACN和△ABM中,,∴△ACN≌△ABM(ASA),故D正确;∴CN=BM.∵CF=BE,∴EM=FN,故A正确,CD与DN的大小无法确定,故B错误.故选:ACD.【考点】本题考查了全等三角形的判定与性质,熟记三角形全等的判定方法并准确识图,理清图中各角度之间的关系是解题的关键.7、AC【解析】【分析】根据等边三角形的性质得到BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD=1,利用勾股定理求出CD的长,由此得到答案.【详解】解:∵等边三角形的顶点A,B的坐标分别是,,∴BC=AB=2,取AB的中点D,过点D作AB的垂线,在垂线上取点C,使BC=AB,AD=BD=1,∴,∴顶点C的坐标可能是或,故选:AC.【考点】此题考查等边三角形的性质,平面直角坐标系中点的坐标,勾股定理,熟记等边三角形的性质是解题的关键.三、填空题1、【解析】【分析】根据定义新运算公式和二次根式的乘法公式计算即可.【详解】解:根据题意可得故答案为:.【考点】此题考查的是定义新运算和二次根式的化简,掌握定义新运算公式和二次根式的乘法公式是解决此题的关键.2、【解析】【分析】先化简二次根式求出y的表达式,再将x的取值依次代入,然后求和即可得.【详解】当时,当时,则所求的总和为故答案为:.【考点】本题考查了二次根式的化简求值、绝对值运算等知识点,掌握二次根式的化简方法是解题关键.3、【解析】【分析】根据折叠的性质和勾股定理即可求得.【详解】解:∵长方形纸片,∴,,根据折叠的性质可得,,,设,,根据勾股定理,即,解得,故答案为:.【考点】本题考查折叠与勾股定理.能正确表示直角三角形的三边是解题关键.4、2或【解析】【详解】可分两种情况:①△ABP≌△PCQ得到BP=CQ,AB=PC,②△ABP≌△QCP得到BA=CQ,PB=PC,然后分别计算出t的值,进而得到v的值.【解答】解:①当BP=CQ,AB=PC时,△ABP≌△PCQ,∵AB=8cm,∴PC=8cm,∴BP=12﹣8=4(cm),∴2t=4,解得:t=2,∴CQ=BP=4cm,∴v×2=4,解得:v=2;②当BA=CQ,PB=PC时,△ABP≌△QCP,∵PB=PC,∴BP=PC=6cm,∴2t=6,解得:t=3,∵CQ=AB=8cm,∴v×3=8,解得:v=,综上所述,当v=2或时,△ABP与△PQC全等,故答案为:2或.【考点】此题考查了动点问题,全等三角形的性质的应用,解一元一次方程,正确理解全等三角形的性质得到相等的对应边求出t是解题的关键.5、-1或5或【解析】【分析】直接解方程再利用一元一次方程无解和分式方程无解分别分析得出答案.【详解】去分母得:,可得:,当时,一元一次方程无解,此时,当时,则,解得:或.故答案为:或或.【考点】此题主要考查了分式方程的解,正确分类讨论是解题关键.6、【解析】【分析】先把分式进行化简,再代入求值.【详解】=当a=时,原式=.故答案为.【考点】分式进行约分时,应先把分子、分母中的多项式进行分解因式,正确分解因式是掌握约分的关键.7、35°.【解析】【分析】根据全等的性质可得:∠EAD=∠CAB,再根据等式的基本性质可得∠1=∠2=35°.【详解】解:∵△ABC≌△ADE,∴∠EAD=∠CAB,∴∠EAD-∠CAD=∠CAB-∠CAD,∴∠2=∠1=35°.故答案为35°.【考点】此题考查的是全等三角形的性质,掌握全等三角形的对应角相等是解决此题的关键.四、解答题1、(1)等边三角形;(2)的度数不变,理由见解析;(3)2【解析】【分析】(1)由、,可得出、,结合点是中点,可得出,进而即可得出为等边三角形;(2)由(1)可得出,根据可得出,再结合、即可得出,根据全等三角形的性质即可得出,即的度数不变;(3)易证为等腰三角形,由等腰三角形及等边三角形的性质可得出,进而可得出.【详解】解:(1)∵在中,,,∴,.∵点是中点,∴,∴为等边三角形.故答案为等边三角形.(2)的度数不变,理由如下:∵,点是中点,∴,∴.∵为等边三角形,∴.又∵为等边三角形,∴,∴,∴.在和中,,∴,∴,即的度数不变.(3)∵为等边三角形,∴.∵,∴,∴为等腰三角形,∴,∴.【考点】本题考查了等边三角形的判定与性质、全等三角形的判定与性质、含度角的直角三角形.勾股定理以及等腰三角形的性质,解题的关键是:(1)找出、;(2)利用全等三角形的判定定理找出;(3)根据等腰三角形及等边三角形的性质找出.2、(1)63°;(2)107°【解析】【分析】(1)根据垂直的定义可得,进而根据三角形内角和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- PaaS平台的自动化运维策略与实践研究-洞察及研究
- 微生物合成药物开发-洞察及研究
- 无创血糖监测技术革新-洞察及研究
- 淡水生态系统中的营养盐循环-洞察及研究
- 教育资源均衡分配-洞察及研究
- 城市绿化生物多样性保护策略研究-洞察及研究
- 城市森林对减少城市热岛效应的影响-洞察及研究
- 情感因素对儿童语言习得的影响研究-洞察及研究
- 2025年T电梯修理考试题及T电梯修理报名考试及答案
- 民族身份认同的心理学探讨-洞察及研究
- 金属非金属地下矿山六大系统建设规范
- 医院节前安全检查记录表范本
- 中科大现代环境生物技术课件第2章 酶工程
- catia考试题及答案
- 耳聋健康教育讲课件
- 新生儿常见症状评估及护理
- 学校反恐各种管理制度
- 聘请总裁协议书
- 管道监检协议书
- 2025年供热通风与空调工程师考试试卷及答案
- 跨界合作网络小说IP改编授权协议
评论
0/150
提交评论