




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,的半径为6,将劣弧沿弦翻折,恰好经过圆心O,点C为优弧上的一个动点,则面积的最大值是()A. B. C. D.2、下表记录了一名球员在罚球线上投篮的结果:投篮次数50100150200250400500800投中次数286387122148242301480投中频率0.5600.6300.5800.6100.5920.6050.6020.600根据频率的稳定性,估计这名球员投篮一次投中的概率约是()A.0.560 B.0.580 C.0.600 D.0.6203、下列图形中,可以看作是中心对称图形的是()A. B. C. D.4、如图,PA,PB是⊙O的切线,A,B为切点,PA=4,则PB的长度为()A.3 B.4 C.5 D.65、图2是由图1经过某一种图形的运动得到的,这种图形的运动是()A.平移 B.翻折 C.旋转 D.以上三种都不对6、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()A. B. C. D.7、如图,DC是⊙O的直径,弦AB⊥CD于M,则下列结论不一定成立的是()A.AM=BM B.CM=DM C. D.8、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()A.1 B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在Rt△ABC,∠B=90°,AB=BC=1,将△ABC绕着点C逆时针旋转60°,得到△MNC,那么BM=______________.2、如图所示,AB是⊙O的直径,弦CD⊥AB于H,∠A=30°,OH=1,则⊙O的半径是______.3、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.4、两直角边分别为6、8,那么的内接圆的半径为____________.5、如果一个扇形的弧长等于它所在圆的半径,那么此扇形叫做“完美扇形”.已知某个“完美扇形”的周长等于6,那么这个扇形的面积等于_____.6、如图,将矩形绕点A顺时针旋转到矩形的位置,旋转角为.若,则的大小为________(度).7、如图,在中,,分别以、、边为直径作半圆,图中阴影部分在数学史上称为“希波克拉底月牙”.当,时,则阴影部分的面积为__________.三、解答题(7小题,每小题0分,共计0分)1、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A=∠O.已知:如图2,AC是⊙O的一条弦,点D在⊙O上(与A、C不重合),联结DE交射线AO于点E,联结OD,⊙O的半径为5,tan∠OAC=.(1)求弦AC的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).2、根据要求回答以下视图问题:(1)如图①,它是由5个小正方体摆成的一个几何体,将正方体①移走后,新几何体与原几何体相比,视图没有发生变化;(2)如图②,请你在网格纸中画出该几何体的主视图(请用斜线阴影表示);(3)如图③,它是由几个小正方体组成的几何体的俯视图,小正方形上的数字表示该位置上的正方体的个数,请在网格纸中画出该几何体的左视图(请用斜线阴影表示).3、一个不透明的口袋中有4个完全相同的小球,把它们分别标号为1,2,3,4随机摸取一个小球后,不放回,再随机摸出一个小球,分别求下列事件的概率:(1)两次取出的小球标号和为奇数;(2)两次取出的小球标号和为偶数.4、小宇和小伟玩“石头、剪刀、布”的游戏.这个游戏的规则是:“剪刀”胜“布”,“布”胜“石头”,“石头”胜“剪刀”,手势相同不分胜负.如果二人同时随机出手(分别出三种手势中的一种手势)一次,那么小宇获胜的概率是多少?5、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).甲种品牌化妆品球两红一红一白两白礼金券(元)6126乙种品牌化妆品球两红一红一白两白礼金券(元)12612(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.6、一张圆桌旁设有4个座位,丙先坐在了如图所示的座位上,甲、乙、丁3人等可能地坐到①、②、③中的3个座位上.(1)甲坐在①号座位的概率是;(2)用画树状图或列表的方法,求甲与乙相邻而坐的概率.7、在太原市创建国家文明城市的过程中,东东和南南积极参加志愿者活动,有下列三个志愿者工作岗位供他们选择:(每个工作岗位仅能让一个人工作)①2个清理类岗位:清理花坛卫生死角;清理楼道杂物(分别用,表示);②1个宣传类岗位:垃圾分类知识宣传(用表示).(1)东东从三个岗位中随机选取一个报名,恰好选择清理类岗位的概率为________.(2)若东东和南南各随机从三个岗位中选取一个报名,请你利用画树状图法或列表法求出他们恰好都选择同一类岗位的概率.-参考答案-一、单选题1、C【分析】如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin60°=6×=3,∵OH⊥AB,∴AH=BH,∴AB=2AH=6,∵OC+OH⩾CT,∴CT⩽6+3=9,∴CT的最大值为9,∴△ABC的面积的最大值为=27,故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT的最大值,属于中考常考题型.2、C【分析】根据频率估计概率的方法并结合表格数据即可解答.【详解】解:∵由频率分布表可知,随着投篮次数越来越大时,频率逐渐稳定到常数0.600附近,∴这名球员在罚球线上投篮一次,投中的概率为0.600.故选:C.【点睛】本题主要考查了利用频率估计概率,概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.3、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.4、B【分析】由切线的性质可推出,.再根据直角三角形全等的判定条件“HL”,即可证明,即得出.【详解】∵PA,PB是⊙O的切线,A,B为切点,∴,,∴在和中,,∴,∴.故选:B【点睛】本题考查切线的性质,三角形全等的判定和性质.熟练掌握切线的性质是解答本题的关键.5、C【详解】解:根据图形可知,这种图形的运动是旋转而得到的,故选:C.【点睛】本题考查了图形的旋转,熟记图形的旋转的定义(把一个平面图形绕平面内某一点转动一个角度,叫做图形的旋转)是解题关键.6、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.7、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB⊥CD,CD过圆心O,∴AM=BM,,,即选项A、C、D选项说法正确,不符合题意,当根据已知条件得CM和DM不一定相等,故选B.【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.8、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B.【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.二、填空题1、【分析】设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,先证明△EMC≌△FMA得ME=MF,从而可得∠CBD=45°,∠CDB=180°-∠BCA-∠CBD=90°,再在Rt△BCD、Rt△CDM中,分别求出BD和DM,即可得到答案.【详解】解:设BN与AC交于D,过M作MF⊥BA于F,过M作ME⊥BC于E,连接AM,如图:∵△ABC绕着点C逆时针旋转60°,∴∠ACM=60°,CA=CM,∴△ACM是等边三角形,∴CM=AM①,∠ACM=∠MAC=60°,∵∠B=90°,AB=BC=1,∴∠BCA=∠CAB=45°,AC==CM,∴∠BCM=∠BCA+∠ACM=105°,∠BAM=∠CAB+∠MAC=105°,∴∠ECM=∠MAF=75°②,∵MF⊥BA,ME⊥BC,∴∠E=∠F=90°③,由①②③得△EMC≌△FMA,∴ME=MF,而MF⊥BA,ME⊥BC,∴BM平分∠EBF,∴∠CBD=45°,∴∠CDB=180°-∠BCA-∠CBD=90°,Rt△BCD中,BD=BC=,Rt△CDM中,DM=CM=,∴BM=BD+DM=,故答案为:.【点睛】本题考查等腰三角形性质、等边三角形的性质及判定,解题的关键是证明∠CDB=90°.2、2【分析】连接OC,利用半径相等以及三角形的外角性质求得∠COH=60°,∠OCH=30°,利用30度角的直角三角形的性质即可求解.【详解】解:连接OC,∵OA=OC,∠A=30°,∴∠COH=2∠A=60°,∵弦CD⊥AB于H,∴∠OHC=90°,∴∠OCH=30°,∵OH=1,∴OC=2OH=2,故答案为:2.【点睛】本题考查了垂径定理和含30°角的直角三角形的性质.熟练掌握垂径定理是解题的关键.3、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.4、5【分析】直角三角形外接圆的直径是斜边的长.【详解】解:由勾股定理得:AB==10,∵∠ACB=90°,∴AB是⊙O的直径,∴这个三角形的外接圆直径是10,∴这个三角形的外接圆半径长为5,故答案为:5.【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.5、2【分析】根据扇形的面积公式S=,代入计算即可.【详解】解:∵“完美扇形”的周长等于6,∴半径r为=2,弧长l为2,这个扇形的面积为:==2.答案为:2.【点睛】本题考查了扇形的面积公式,扇形面积公式与三角形面积公式十分类似,为了便于记忆,只要把扇形看成一个曲边三角形,把弧长l看成底,R看成底边上的高即可.6、20【分析】先利用旋转的性质得到∠ADC=∠D=90°,∠DAD′=α,再利用四边形内角和计算出∠BAD‘=70°,然后利用互余计算出∠DAD′,从而得到α的值.【详解】∵矩形ABCD绕点A顺时针旋转到矩形A′B′C′D′的位置,∴∠ADC=∠D=90°,∠DAD′=α,∵∠ABC=90°,∴∠BAD’=180°-∠1=180°-110°=70°,∴∠DAD′=90°-70°=20°,即α=20°.故答案为20.【点睛】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.7、【分析】根据阴影部分面积等于以为直径的2个半圆的面积加上减去为半径的半圆面积即.【详解】解:在中,,,.故答案为:【点睛】本题考查了勾股定理,求扇形面积,直径所对的圆周角是直角,掌握圆周角定理是解题的关键.三、解答题1、(1)8(2)(3)或.【分析】(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=AC,由锐角三角函数和勾股定理可求解;(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;(3)分两种情况讨论,由相似三角形和勾股定理可求解.(1)如图2,过点O作OH⊥AC于点H,由垂径定理得:AH=CH=AC,在Rt△OAH中,,∴设OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,∵∠DEO=∠AEC,∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;,∴∠ACD≠∠DOE∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,∴当△DOE与△AEC相似时,∠DOE=∠A,∴OD∥AC,∴,∵OD=OA=5,AC=8,∴,∴,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG∽△AOH,∴,∴,∴,∴,,在Rt△CEG中,;(3)当点E在线段OA上时,如图3,过点E作EG⊥AC于G,过点O作OH⊥AC于H,延长AO交⊙O于M,连接AD,DM,由(1)可得OH=3,AH=4,AC=8,∵OE=1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴,∴AG=,EG=,∴GC=,∴EC===,∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=2;当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,同理可求EG=,AG=,AE=6,GC=,∴EC===,∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴,∴,∴AD=,综上所述:AD的长是或【点睛】本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.2、(1)主(2)见解析(3)见解析【分析】(1)根据移开后的主视图和没有移开时的主视图一致即可求解;(2)根据题意画出主视图即可;(3)根据从左边起各列的小正方形数分别为2,3,1,画出左视图即可.(1)将正方体①移走后,新几何体与原几何体相比主视图没有变化,如图,故答案为:主(2)图②的主视图如图,(3)图③的左视图如图,【点睛】本题考查了画三视图,根据立体图形得出三视图是解题的关键.3、(1);(2).【分析】(1)列出表格展示所有可能的结果,根据表格即可知共有12种可能的情况,再找到两次取出的小球标号和为奇数的情况数,利用概率公式,即可求解;(2)找出两次取出的小球标号和为偶数的情况数,再利用概率公式,即可求解.(1)解:根据题意列出表格,如下表:根据表格可知:共有12种可能的情况,其中两次取出的小球标号和为奇数的情况有8种,故两次取出的小球标号和为奇数的概率为;(2)根据表格可知:两次取出的小球标号和为偶数的情况有4种.故两次取出的小球标号和为偶数的概率为.123411+2=3,奇数1+3=4,偶数1+4=5,奇数22+1=3,奇数2+3=5,奇数2+4=6,偶数33+1=4,偶数3+2=5,奇数3+4=7,奇数44+1=5,奇数4+2=6,偶数4+3=7,奇数【点睛】4、小宇获胜的概率是,见解析.【分析】根据题意画树状图表示出所有等可能的情况,继而解题.【详解】解:画树状图如下,所有机会均等的情况共9种,小宇获胜的概率为:,答:小宇获胜的概率是.【点睛】本题考查用列表法或画树状图表示概率,是基础考点,掌握相关知识是解题关键.5、(1)摇出一红一白的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年气候变化对极端天气事件的影响
- 2025年高二物理上学期电磁波产生与传播特性题
- 山东外贸考试试题及答案
- 大学记者模拟面试题及答案
- 面试邮政真题题库及答案
- 2025年园林树木考试试题及答案
- 浙江团校笔试题目及答案
- 模拟博物馆面试题及答案
- 宠物直播冒险创新创业项目商业计划书
- 软件过程改进创新创业项目商业计划书
- 《光伏逆变器用长寿命级CD297S型铝电解电容器》
- 《公路软土地基处治工程技术规范》(DB45T 1972-2019)
- 工余安健环知识培训
- 云南省石林县鹿阜中学七年级地理上册 第一章 第四节 地球的公转教案 (新版)商务星球版
- 《路遥人生》读书分享课件
- 以青春之名励青春之志
- 小学数学新旧知识关联
- 第9课 共同弘扬中华传统美德 《中华民族大团结》(初中 精讲课件)
- 万夫一力天下无敌 课件-2023-2024学年高一上学期增强班级凝聚力主题班会
- GB/T 20671.4-2006非金属垫片材料分类体系及试验方法第4部分:垫片材料密封性试验方法
- 灌肠分类、操作及并发症处理
评论
0/150
提交评论