难点解析沪科版9年级下册期末试卷附答案详解(A卷)_第1页
难点解析沪科版9年级下册期末试卷附答案详解(A卷)_第2页
难点解析沪科版9年级下册期末试卷附答案详解(A卷)_第3页
难点解析沪科版9年级下册期末试卷附答案详解(A卷)_第4页
难点解析沪科版9年级下册期末试卷附答案详解(A卷)_第5页
已阅读5页,还剩29页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()A.1 B. C. D.2、在一个不透明的口袋中装有3张完全相同的卡片,卡片上面分别写有数字,0,2,从中随机抽出两张不同卡片,则下列判断正确的是()A.数字之和是0的概率为0 B.数字之和是正数的概率为C.卡片上面的数字之和是负数的概率为 D.数字之和分别是负数、0、正数的概率相同3、如图,在中,,,将绕点A顺时针旋转60°得到,此时点B的对应点D恰好落在BC边上,则CD的长为()A.1 B.2 C.3 D.44、在不透明口袋内装有除颜色外完全相同的5个小球,其中红球2个,白球3个.搅拌均匀后,随机抽取一个小球,是红球的概率为()A. B. C. D.5、在一个不透明的盒子中装有12个白球,4个黄球,这些球除颜色外都相同.若从中随机摸出一个球,则摸出的一个球是黄球的概率为()A. B. C. D.6、如图,A,B,C是正方形网格中的三个格点,则是()A.优弧 B.劣弧 C.半圆 D.无法判断7、下面的图形中既是轴对称图形又是中心对称图形的是()A. B. C. D.8、中国有悠久的金石文化,印信是金石文化的代表之一.南北朝时期的官员独孤信的印信是迄今发现的中国古代唯一一枚楷书印.它的表面均由正方形和等边三角形组成(如图1),可以看成图2所示的几何体.从正面看该几何体得到的平面图形是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、皮影戏是一种以兽皮或纸板做成的人物剪影,在灯光照射下用隔亮布进行表演的民间戏剧.表演者在幕后操纵剪影、演唱,或配以音乐,具有浓厚的乡土气息.“皮影戏”中的皮影是______(填写“平行投影”或“中心投影”)2、AB是的直径,点C在上,,点P在线段OB上运动.设,则x的取值范围是________.3、在圆内接四边形ABCD中,,则的度数为______.4、边长相等、各内角均为120°的六边形ABCDEF在直角坐标系内的位置如图所示,,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60°,经过2021次旋转之后,点B的坐标是_____________.5、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_______.6、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠D=110°,则的长为__.7、在同一平面上,外有一点P到圆上的最大距离是8cm,最小距离为2cm,则的半径为______cm.三、解答题(7小题,每小题0分,共计0分)1、如图1,O为直线DE上一点,过点O在直线DE上方作射线OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒5°的速度逆时针旋转一周,设旋转时间为t秒.(1)如图2,当t=4时,∠AOC=,∠BOE=,∠BOE﹣∠AOC=;(2)当三角板旋转至边AB与射线OE相交时(如图3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出t的取值,若不存在,请说明理由.2、如图,在Rt△ABC中,∠B=90°,∠BAC的平分线AD交BC于点D,点E在AC上,以AE为直径的⊙O经过点D.(1)求证:①BC是⊙O的切线;②;(2)若点F是劣弧AD的中点,且CE=3,试求阴影部分的面积.3、如图,等腰直角三角形,,,延长至E,使得,以为直角边作,,.(1)若以每秒1个单位的速度沿向右运动,当点E到达点C时停止运动,直接写出在运动过程中与重叠部分面积S与运动时间t(单位:秒)的函数关系式;(2)点M为线段的中点,当(1)中的顶点E运动到点C后,将绕着点C继续顺时针旋转得到,点P是直线上一动点,连接,求的最小值.4、新高考“3+1+2”是指:3,语数外三科是必考科目;1,物理、历史两科中任选一科;2,化学、生物、地理、政治四科中任选两科.某同学确定选择“物理”,但他不确定其它两科选什么,于是他做了一个游戏:他拿来四张不透明的卡片,正面分别写着“化学、生物、地理、政治”,再将这四张卡片背面朝上并打乱顺序,然后从这四张卡片中随机抽取两张,请你用画树状图(或列表)的方法,求该同学抽出的两张卡片是“化学、政治”的概率.5、从一副普通的扑克牌中取出四张牌,它们的牌面数字分别为.将这四张扑克牌背面朝上,洗匀.(1)从中随机抽取一张,则抽取的这张牌的牌面数字能被3整除的概率是________;(2)从中随机抽取一张,不放回,再从剩余的三张牌中随机抽取一张.①利用画树状图或列表的方法,写出取出的两张牌的牌面数字所有可能的结果;②求抽取的这两张牌的牌面数字之和是偶数的概率.6、如图,在中,,,D是边BC上一点,作射线AD,满足,在射线AD取一点E,且.将线段AE绕点A逆时针旋转90°,得到线段AF,连接BE,FE,连接FC并延长交BE于点G.(1)依题意补全图形;(2)求的度数;(3)连接GA,用等式表示线段GA,GB,GC之间的数量关系,并证明.7、如图,正方形ABCD是半径为R的⊙O内接四边形,R=6,求正方形ABCD的边长和边心距.-参考答案-一、单选题1、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B.【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.2、A【分析】列树状图,得到共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,依次判断即可.【详解】解:列树状图如下:共有6种等可能的情况,和为正数的有4种情况,和为负数的有2种情况,A.数字之和是0的概率为0,故该项符合题意;B.数字之和是正数的概率为,故该项不符合题意;C.卡片上面的数字之和是负数的概率为,故该项不符合题意;D.数字之和分别是负数、0、正数的概率不相同,故该项不符合题意;故选:A.【点睛】此题考查了列树状图求事件的概率,概率的计算公式,正确列出树状图解答是解题的关键.3、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2.【详解】由题意以及旋转的性质知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°故为等边三角形,即AB=AD=BD=2则CD=BC-BD=4-2=2故选:B.【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.4、A【分析】用红球的个数除以所有球的个数即可求得抽到红球的概率.【详解】解:∵共有5个球,其中红球有2个,∴P(摸到红球)=,故选:A.【点睛】此题主要考查概率的意义及求法.用到的知识点为:概率=所求情况数与总情况数之比.5、C【分析】根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】解:一个不透明的盒子中装有12个白球,4个黄球,从中随机摸出一个球,所有等可能的情况16种,其中摸出的一个球是黄球的情况有4种,∴随机抽取一个球是黄球的概率是.故选C.【点睛】本题主要考查了概率公式的应用,用到的知识点为:概率=所求情况数与总情况数之比.得到所有符合条件的情况数是解决本题的关键.6、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断.【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心.故选:B.【点睛】本题考查已知圆上三点求圆心,取任意两条线段中垂线交点确定圆心是解题关键.7、A【详解】解:A、既是轴对称图形又是中心对称图形,此项符合题意;B、是中心对称图形,不是轴对称图形,此项不符题意;C、是轴对称图形,不是中心对称图形,此项不符题意;D、是轴对称图形,不是中心对称图形,此项不符题意;故选:A.【点睛】本题考查了中心对称图形和轴对称图形,熟记中心对称图形的定义(在平面内,把一个图形绕某点旋转,如果旋转后的图形与另一个图形重合,那么这两个图形互为中心对称图形)和轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)是解题关键.8、D【分析】找到从正面看所得到的图形即可.【详解】解:从正面看是一个正六边形,里面有2个矩形,故选D.【点睛】本题灵活考查了三种视图之间的关系以及视图和实物之间的关系,同时还考查了对图形的想象力,难度适中.二、填空题1、中心投影【分析】根据平行投影和中心投影的定义解答即可.【详解】解:“皮影戏”中的皮影是中心投影.故答案是中心投影.【点睛】本题主要考查了平行投影和中心投影,中心投影是指把光由一点向外散射形成的投影,平行投影是在一束平行光线照射下形成的投影.2、【分析】分别求出当点P与点O重合时,当点P与点B重合时x的值,即可得到取值范围.【详解】解:当点P与点O重合时,∵OA=OC,∴,即;当点P与点B重合时,∵AB是的直径,∴,∴x的取值范围是.【点睛】此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P的运动位置是解题的关键.3、110°【分析】根据圆内接四边形对角互补,得∠D+∠B=180°,结合已知求解即可.【详解】∵圆内接四边形对角互补,∴∠D+∠B=180°,∵∴∠D=110°,故答案为:110°.【点睛】本题考查了圆内接四边形互补的性质,熟练掌握并运用性质是解题的关键.4、【分析】根据旋转找出规律后再确定坐标.【详解】∵正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,∴每6次翻转为一个循环组循环,∵,∴经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,∵,∴,∴翻转前进的距离为:,如图,过点B作BG⊥x于G,则∠BAG=60°,∴,,∴,∴点B的坐标为.故答案为:.【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键.5、##【分析】延长AG交CD于M,如图1,可证△ADG≌△DGC可得∠GCD=∠DAM,再证△ADM≌△DFC可得DF=DM=AE,可证△ABE≌△ADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值.【详解】解:延长AG交CD于M,如图1,∵ABCD是正方形,∴AD=CD=AB,∠BAD=∠ADC=90°,∠ADB=∠BDC,∵AD=CD,∠ADB=∠BDC,DG=DG,∴△ADG≌△DGC,∴∠DAM=∠DCF且AD=CD,∠ADC=∠ADC,∴△ADM≌△CDF,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH,∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD=,∵DH≥OD-OH,∴DH≥-1,∴DH的最小值为-1,故答案为:-1.【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.6、##【分析】连接OA、OC,先求出∠ABC的度数,然后得到∠AOC,再由弧长公式即可求出答案.【详解】解:连接OA、OC,如图,∵四边形ABCD是⊙O的内接四边形,∠D=110°,∴,∴,∴;故答案为:.【点睛】本题考查了弧长的计算以及圆周角定理,解答本题的关键是掌握弧长公式.7、5或3【分析】分点P在圆内或圆外进行讨论.【详解】解:①当点P在圆内时,⊙O的直径长为8+2=10(cm),半径为5cm;②当点P在圆外时,⊙O的直径长为8-2=6(cm),半径为3cm;综上所述:⊙O的半径长为5cm或3cm.故答案为:5或3.【点睛】本题考查了点与圆的位置关系:点的位置可以确定该点到圆心距离与半径的关系,反过来已知点到圆心距离与半径的关系可以确定该点与圆的位置关系.三、解答题1、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由见解析;(3)t的取值为5或20或62【分析】(1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;(3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,当t=4时,旋转角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边AB与射线OE相交时,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①当OA为∠DOC的平分线时,旋转角5t=∠DOC=25,∴t=5;②当OC为∠DOA的平分线时,旋转角5t=2∠DOC=100,∴t=20;③当OD为∠COA的平分线时,360-5t=∠DOC=50,∴t=62,综上,满足条件的t的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.2、(1)①见解析;②见解析;(2).【分析】(1)①连接OD,由角平分线的性质解得,再根据内错角相等,两直线平行,证明,继而由两直线平行,同旁内角互补证明即可解题;②连接DE,由弦切角定理得到,再证明,由相似三角形对应边成比例解题;(2)证明是等边三角形,四边形DOAF是菱形,,结合扇形面积公式解题.【详解】解:(1)①连接OD,是∠BAC的平分线是⊙O的切线;②连接DE,是⊙O的切线,是直径(2)连接DE、OD、DF、OF,设圆的半径为R,点F是劣弧AD的中点,OF是DA中垂线DF=AF,是等边三角形,四边形DOAF是菱形,.【点睛】本题考查圆的综合题,涉及切线的判定与性质、平行四边形的性质、等边三角形的判定与性质、相似三角形的判定与性质、扇形面积等知识,综合性较强,有难度,掌握相关知识是解题关键.3、(1)(2)【分析】(1)根据运动重合部分不同情况分四种情况讨论,①当时,②当时,③当时,④当时,根据三角形的面积公式求函数解析式即可.(2)作关于的对称点,连接,过点作于点,过点作于点,设交于点,交于点,则的最小值即为的长,进而解直角三角形,即可求得的长,即的最小值(1)等腰直角三角形,,,,在,,①当时,如图,重叠部分面积为,设交于点,过点作于点,以每秒1个单位的速度沿向右运动,设,则在,,即解得②当时,如图,重叠部分面积为四边形的面积,设交于点,过点作于点,设交于点,,③当时,此时重叠面积为④当时,如图,设交于点,此时重叠面积为四边形的面积,,综上所述,(2)如图,作关于的对称点,连接,过点作于点,过点作于点,设交于点,交于点,则在中,则的最小值即为的长在中,设,,则中,为的中点,则,即的最小值为【点睛】本题考查了动点的函数问题,解直角三角形,(1)分类讨论,(2)转化线段是解题的关键.4、【分析】用A、B、C、D分别表示化学、生物、地理、政治,然后画出树状图求解.【详解】解:用A、B、C、D分别表示化学、生物、地理、政治,画树状图如下,,由树状图可知,共有12种等可能发生的情况,其中符合条件的情况有2种,所以该同学抽出的两张卡片是“化学、政治”的概率=.【点睛】本题考查了树状图法或列表法求概率,解题的关键是正确画出树状图或表格,然后用符合条件的情况数m除以所有等可能发生的情况数n即可,即.5、(1)(2)①见解析;②【分析】(1)直接由概率公式求解即可;(2)①列表,共有12种等可能的结果,②抽取的这两张牌的牌面数字之和是偶数的结果有4种,再由概率公式求解即可.(1)∵共有四张牌,它们的牌面数字分别为3,4,6,9,其中抽取的这张牌的牌面数字能被3整除的有3种,∴从中随机抽取一张,则抽取的这张牌的牌面数字能被3整除的概率是故答案为:(2)①根据题意,列表如下:第一次第二次34693—(4,3)(6,3)(9,3)4(3,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论