




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》专项训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在中,,,AD平分,E是AD中点,若,则CE的长为()A. B. C. D.2、如图,矩形ABCD中,DE⊥AC于E,若∠ADE=2∠EDC,则∠BDE的度数为()A.36° B.30° C.27° D.18°3、如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM的长为()A.2 B. C. D.14、如图,DE是ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为()A.2.5 B.1.5 C.4 D.55、的周长为32cm,AB:BC=3:5,则AB、BC的长分别为()A.20cm,12cm B.10cm,6cm C.6cm,10cm D.12cm,20cm第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,平行四边形ABCD中,对角线AC、BD交于点O,M、N分别为AB、BC的中点,若OM=1.5,ON=1,则平行四边形ABCD的周长是________.2、如图,为了测量池塘两岸A,B两点之间的距离,可在AB外选一点C,连接AC和BC,再分别取AC、BC的中点D,E,连接DE并测量出DE的长,即可确定A、B之间的距离.若量得DE=15m,则A、B之间的距离为__________m3、正方形ABCD的边长为4,则图中阴影部分的面积为___.4、在平行四边形ABCD中,若∠A=130°,则∠B=______,∠C=______,∠D=______.5、在直角墙角FOE中有张硬纸片正方形ABCD靠墙边滑动,如图所示,AD=2,A点沿墙往下滑动到O点的过程中,正方形的中心点M到O的最小值是______.三、解答题(5小题,每小题10分,共计50分)1、(探究发现)(1)如图1,△ABC中,AB=AC,∠BAC=90°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=90°,则AE、AF、AB之间满足的数量关系是.(类比应用)(2)如图2,△ABC中,AB=AC,∠BAC=120°,点D为BC的中点,E、F分别为边AC、AB上两点,若满足∠EDF=60°,试探究AE、AF、AB之间满足的数量关系,并说明理由.(拓展延伸)(3)在△ABC中,AB=AC=5,∠BAC=120°,点D为BC的中点,E、F分别为直线AC、AB上两点,若满足CE=1,∠EDF=60°,请直接写出AF的长.2、如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.(1)求证:四边形DEFB是平行四边形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四边形DEFB的周长.3、如图,四边形ABCD是正方形,BE⊥BF,BE=BF,EF与BC交于点G.(1)求证:AE=CF;(2)若∠ABE=62°,求∠GFC+∠BCF的值.4、在中,,斜边,过点作,以AB为边作菱形ABEF,若,求的面积.5、如图,四边形ABCD是菱形,DE⊥AB、DF⊥BC,垂足分别为E、F.求证:BE=BF.-参考答案-一、单选题1、B【解析】【分析】根据三角形内角和定理求出∠BAC,根据角平分线的定义∠DAB=∠B,求出AD,根据直角三角形的性质解答即可.【详解】解:∵∠ACB=90°,∠B=30°,∴∠BAC=90°-30°=60°,∵AD平分∠BAC,∴∠DAB=∠BAC=30°,∴∠DAB=∠B,∴AD=BD=a,在Rt△ACB中,E是AD中点,∴CE=AD=,故选:B.【点睛】本题考查的是直角三角形的性质、角平分线的定义,掌握直角三角形斜边上的中线是斜边的一半是解题的关键.2、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出.【详解】解:在矩形ABCD中,,∵,∴,,∵,∴,∵,∴,∴,∴.故选:B.【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键.3、B【解析】【分析】由折叠的性质可得,∠BMN=90°,FB=AB=2,由此利用勾股定理求解即可.【详解】解:∵把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,AB=2,∴,∠BMN=90°,∵四边形ABCD为正方形,AB=2,过点B折叠纸片,使点A落在MN上的点F处,∴FB=AB=2,则在Rt△BMF中,,故选B.【点睛】本题主要考查了正方形与折叠,勾股定理,解题的关键在于能够熟练掌握折叠的性质.4、B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得,再利用三角形中位线定理可得DE=4,进而可得答案.【详解】解:∵D为AB中点,∠AFB=90°,AB=5,∴,∵DE是△ABC的中位线,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故选:B.【点睛】此题主要考查了直角三角形的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.5、C【解析】【分析】根据平行四边形的性质,可得AB=CD,BC=AD,然后设,可得到,即可求解.【详解】解:∵四边形ABCD是平行四边形,∴AB=CD,BC=AD,∵AB:BC=3:5,∴可设,∵的周长为32cm,∴,即,解得:,∴.故选:C【点睛】本题主要考查了平行四边形的性质,熟练掌握平行四边形的对边相等是解题的关键.二、填空题1、10【解析】【分析】根据平行四边形的性质可得BO=DO,AD=BC,AB=CD,再由条件M、N分别为AB、BC的中点可得MO是△ABD的中位线,NO是△BCD的中位线,再根据三角形中位线定理可得AD、DC的长.【详解】解:∵四边形ABCD是平行四边形,∴BO=DO,AD=BC,AB=CD,∵M、N分别为AB、BC的中点,∴MO=AD,NO=CD,∵OM=1.5,ON=1,∴AD=3,CD=2,∴平行四边形ABCD的周长是:3+3+2+2=10,故答案为:10.【点睛】此题主要考查了平行四边形的性质,以及中位线定理,关键是掌握平行四边形对边相等,对角线互相平分.2、30【解析】【分析】根据三角形中位线的性质解答即可.【详解】解:∵点D,E分别是AC,BC的中点,∴DE是△ABC的中位线,∴AB=2DE=30m.故填30.【点睛】本题主要考查的是三角形中位线定理,掌握三角形的中位线平行于第三边且等于第三边的一半是解答本题的关键.3、8【解析】【分析】根据正方形的轴对称的性质可得阴影部分的面积等于正方形的面积的一半,然后列式进行计算即可得解.【详解】解:×4×4=8.故答案为:8.【点睛】本题考查正方形的性质,轴对称的性质,将阴影面积转化为三角形面积是解题的关键,学会于转化的思想思考问题.4、【解析】【分析】利用平行四边形的性质:邻角互补,对角相等,即可求得答案.【详解】解:在平行四边形ABCD中,、是的邻角,是的对角,,,故答案为:,,.【点睛】本题主要是考查了平行四边形的性质:对角相等,邻角互补,熟练掌握平行四边形的性质,求解决本题的关键.5、2【解析】【分析】取的中点为,连接,根据直角三角形的性质求出OG和MG的长,然后根据两点之间线段最短即可求解.【详解】解:取的中点为,连接,为正方形,,,为中点,,又为直角三角形,,的轨迹是以为圆心的圆弧,最小值为当三点共线时,即,故答案为:2.【点睛】本题考查了正方形的性质,直角三角形斜边的中线等于斜边的一半,以及两点之间线段最短等知识,正确作出辅助线是解答本题的关键.三、解答题1、(1)AB=AF+AE;(2)AE+AF=AB,理由见解析;(3)或【分析】(1)证明△BDF≌OADE,可得BF=AE,从而证明AB=AF+AE;(2)取AB中点G,连接DG,利用ASA证明△GDF≌△ADE,得到GF=AE,可得AG=AB=AF+FG=AE+AF;(3)分两种情况:当点E在线段AC上时或当点E在AC延长线上时,取AC的中点H,连接DH,同理证明△ADF≌△HDE,得到AF=HE,从而求解.【详解】(1)如图1,∵AB=AC,∠BAC=90°,∴∠B=∠C=45°,∵D为BC中点,∴AD⊥BC,∠BAD=∠CAD=45°,AD=BD=CD,∴∠ADB=∠ADF+∠BDF=90°,∵∠EDF=∠ADE+∠ADF=90°,∴∠BDF=∠ADE,∵BD=AD,∠B=∠CAD=45°,∴△BDF≌△ADE(ASA),∴BF=AE,∴AB=AF+BF=AF+AE;故答案为:AB=AF+AE;(2)AE+AF=AB.理由是:如图2,取AB中点G,连接DG,∵点G是斜边中点,∴DG=AG=BG=AB,∵AB=AC,∠BAC=120°,点D为BC的中点,∴∠BAD=∠CAD=60°,∴∠GDA=∠BAD=60°,即∠GDF+∠FDA=60°,又∵∠FAD+∠ADE=∠FDE=60°,∴∠GDF=∠ADE,∵DG=AG,∠BAD=60°,∴△ADG为等边三角形,∴∠AGD=∠CAD=60°,GD=AD,∴△GDF≌△ADE(ASA),∴GF=AE,∴AG=AB=AF+FG=AE+AF,∴AE+AF=AB;(3)当点E在线段AC上时,如图3,取AC的中点H,连接DH,当AB=AC=5,CE=1,∠EDF=60°时,AE=4,此时F在BA的延长线上,同(2)可得:△ADF≌△HDE(ASA),∴AF=HE,∵AH=CH=AC=,CE=1,∴,当点E在AC延长线上时,如图4,同理可得:;综上:AF的长为或.【点睛】本题考查三角形综合问题,掌握全等三角形的判定与性质是解题的关键2、(1)见解析;(2)平行四边形DEFB的周长=【分析】(1)证DE是△ABC的中位线,得DE∥BC,BC=2DE,再证DE=BF,即可得出四边形DEFB是平行四边形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【详解】(1)证明:∵点D,E分别是AC,AB的中点,∴DE是△ABC的中位线,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四边形DEFB是平行四边形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,∴BD=EF,∵D是AC的中点,AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四边形DEFB的周长=2(DE+BD)=2(4+10)=28(cm).【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握三角形中位线定理,证明四边形DEFB为平行四边形是解题的关键.3、(1)证明见解析;(2)73°.【分析】(1)根据正方形的性质及各角之间的关系可得:,由全等三角形的判定定理可得,再根据其性质即可得证;(2)根据垂直及等腰三角形的性质可得,再由三角形的外角的性质可得,由此计算即可.【详解】(1)证明:∵四边形ABCD是正方形,∴,,∵,∴,∵°,,∴,在和中,,∴,∴;(2)解:∵BE⊥BF,∴,又∵,∴,∵四边形ABCD是正方形,∴,∵,∴,∴.∴的值为.【点睛】题目主要考查全等三角形的判定和性质,正方形的性质,三角形的外角性质,理解题意,熟练运用各个定理性质是解题关键.4、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中,利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30°角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点四边形ABEF为菱形,,,,在中,,根据题意,,根据平行线间的距离处处相等,.答:的面积为4.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025安徽宣城市旌德县兴业融资担保有限公司招聘3人考前自测高频考点模拟试题完整参考答案详解
- 2025湖南娄底市新化县中医医院公开招聘编制外工作人员15人考前自测高频考点模拟试题及一套答案详解
- 2025贵州黔西南州生态移民局公益性岗位招聘模拟试卷有完整答案详解
- 2025年东营市垦利区卫生健康局公开招聘劳务派遣工作人员考前自测高频考点模拟试题及答案详解(网校专用)
- 2025年淮南毛集实验区招聘区属国有企业3人模拟试卷附答案详解(黄金题型)
- 2025年松原市繁荣社区卫生服务中心公开招用编外(聘用)人员的(20人)模拟试卷附答案详解(典型题)
- 2025贵州医科大学第三附属医院第十三届贵州人才博览会引才5人模拟试卷及1套完整答案详解
- 2025年南安市部分公办学校专项招聘编制内新任教师(二)模拟试卷及1套参考答案详解
- 2025广东中山市教体系统事业单位招聘事业单位人员79人(第四期)模拟试卷及答案详解(新)
- 2025年河北唐山市市直事业单位公开招聘工作人员277名考前自测高频考点模拟试题(含答案详解)
- 大学英语四级词汇完整表(打印背诵版)
- 开封市第二届职业技能大赛健康和社会照护项目技术文件(世赛选拔项目)
- 建筑工地安全施工规范
- 2024至2030年全球及中国海洋休闲设备行业市场分析及投资建议报告
- 心脏搭桥手术病历
- 托育早教中心家长常见问题(百问百答)
- QFD质量功能展开的未来发展趋势
- 燃气行业数字化转型研究
- 超声引导下神经阻滞
- 围墙新建及改造工程施工组织设计(技术标)
- 房屋建筑学民用建筑构造概论
评论
0/150
提交评论