




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期中测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、在中,,则的值是(
).A. B. C. D.2、对于函数的图象,下列说法不正确的是(
)A.开口向下 B.对称轴是直线C.最大值为 D.与轴不相交3、如图,四边形OABC是平行四边形,点A的坐标为A(3,0),∠COA=60°,D为边AB的中点,反比例函数y=(x>0)的图象经过C,D两点,直线CD与y轴相交于点E,则点E的坐标为(
)A.(0,2) B.(0,3) C.(0,5) D.(0,6)4、北中环桥是省城太原的一座跨汾河大桥(如图1),它由五个高度不同,跨径也不同的抛物线型钢拱通过吊桥,拉锁与主梁相连,最高的钢拱如图2所示,此钢拱(近似看成二次函数的图象-抛物线)在同一竖直平面内,与拱脚所在的水平面相交于A,B两点,拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,则此抛物线钢拱的函数表达式为(
)A. B. C. D.5、已知二次函数的图像如图所示,有下列结论:①;②>0;③;④不等式<0的解集为1≤<3,正确的结论个数是(
)A.1 B.2 C.3 D.46、下列各式中表示二次函数的是()A.y=x2+ B.y=2﹣x2C.y= D.y=(x﹣1)2﹣x2二、多选题(7小题,每小题2分,共计14分)1、如图,在正方形ABCD中,E是BC的中点,F是CD上一点,且,下列结论:①∠BAE=30°,②△ABE∽△AEF,③AE⊥EF,④△ADF∽△ECF.其中正确的为(
)A.① B.② C.③ D.④2、为了推动“成渝地区双城经济圈”的建设,某工厂为了推进产业协作“一条链”,自2021年1月开始科学整改,其月利润(万元)与月份之间的变化如图所示,整改前是反比例函数图象的一部分,整改后是一次函数图象的一部分,下列选项正确的有(
)A.4月份的利润为50万元B.治污改造完成后每月利润比前一个月增加30万元C.治污改造完成前后共有4个月的利润低于100万元D.9月份该厂利润达到200万元3、如图所示,,,,均在正方形网格中的格点上,,分别用和表示,下列四个选项中不正确的是()A. B. C. D.4、二次函数y=ax2+bx+c的部分对应值如下表:以下结论正确的是(
)x…﹣3﹣20135…y…70﹣8﹣9﹣57…A.抛物线的顶点坐标为(1,﹣9);B.与y轴的交点坐标为(0,﹣8);C.与x轴的交点坐标为(﹣2,0)和(2,0);D.当x=﹣1时,对应的函数值y为﹣5.5、具备下列各组条件的两个三角形中,一定相似的是(
)A.有一个角是40°的两个等腰三角形 B.两个等腰直角三角形C.有一个角为100°的两个等腰三角形 D.两个等边三角形6、如图是抛物线的一部分,抛物线的顶点坐标是A(1,3),与x轴的一个交点是B(4,0),点P在抛物线上,且在直线AB上方,则下列结论正确的是(
)A. B.方程有两个相等的实根C. D.点P到直线AB的最大距离7、如图,在Rt△ABC中,∠A=90°,AD⊥BC,垂足为D.则下列结论中正确的是(
)A.sinα=sinB B.sinα=cosβ C.AD2=BD•DC D.AB2=BD•BC第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、已知=,则=________.2、已知二次函数y=x2+bx+c的顶点在x轴上,点A(m﹣1,n)和点B(m+3,n)均在二次函数图象上,求n的值为____.3、如图,点C在线段上,且,分别以、为边在线段的同侧作正方形、,连接、,则_________.4、如图,抛物线的图象与坐标轴交于点、、,顶点为,以为直径画半圆交轴的正半轴于点,圆心为,是半圆上的一动点,连接,是的中点,当沿半圆从点运动至点时,点运动的路径长是__________.5、在等腰△ABC中,AB=AC,AD⊥BC于D,G是重心,若AG=9cm,则GD=_______cm.6、如图,在中,,,,是斜边上方一点,连接,点是的中点,垂直平分,交于点,连接,交于点,当为直角三角形时,线段的长为________.7、抛物线是二次函数,则m=___.四、解答题(6小题,每小题10分,共计60分)1、某公司电商平台,在2021年五一长假期间,举行了商品打折促销活动,经市场调查发现,某种商品的周销售量y(件)是关于售价x(元/件)的一次函数,下表仅列出了该商品的售价x,周销售量y,周销售利润W(元)的三组对应值数据.x407090y1809030W360045002100(1)求y关于x的函数解析式(不要求写出自变量的取值范围);(2)若该商品进价a(元/件),售价x为多少时,周销售利润W最大?并求出此时的最大利润;(3)因疫情期间,该商品进价提高了m(元/件)(),公司为回馈消费者,规定该商品售价x不得超过55(元/件),且该商品在今后的销售中,周销售量与售价仍满足(1)中的函数关系,若周销售最大利润是4050元,求m的值.2、如图1,E是等边ABC的边BC上一点(不与点B,C重合),连接AE,以AE为边向右作等边AEF,连接CF.已知ECF的面积(S)与BE的长(x)之间的函数关系如图2所示(P为抛物线的顶点)﹒(1)当ECF的面积最大时,求∠FEC的度数;(2)求等边ABC的边长.3、根据下列条件,求二次函数的解析式.(1)图象经过(0,1),(1,﹣2),(2,3)三点;(2)图象的顶点(2,3),且经过点(3,1);4、若二次函数图像经过,两点,求、的值.5、已知关于x的一元二次方程x2+x−m=0.(1)设方程的两根分别是x1,x2,若满足x1+x2=x1•x2,求m的值.(2)二次函数y=x2+x−m的部分图象如图所示,求m的值.6、如图,在中,是对角线、的交点,,,垂足分别为点、.(1)求证:.(2)若,,求的值.-参考答案-一、单选题1、C【解析】【分析】首先根据勾股定理求得AC的长,然后根据正弦的定义即可求解.【详解】解:根据勾股定理可得:AC==,∴sinB==.故选:C.【考点】本题主要考查了求一个角的正弦值,求出AC的长,正确理解正弦的定义是解题关键.2、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:∵,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.3、B【解析】【分析】作CE⊥x轴于点E,过B作BF⊥x轴于F,过D作DM⊥x轴于M,设C的坐标为(x,x),表示出D的坐标,将C、D两点坐标代入反比例函数的解析式,解关于x的方程求出x即可得到点C、D的坐标,进而求得直线CD的解析式,最后计算该直线与y轴交点坐标即可得出结果.【详解】解:作CE⊥x轴于点E,则∠CEO=90°,过B作BF⊥x轴于F,过D作DM⊥x轴于M,则BF=CE,DM∥BF,BF=CE,∵D为AB的中点,∴AM=FM,∴DM=BF,∵∠COA=60°,∴∠OCE=30°,∴OC=2OE,CE=OE,∴设C的坐标为(x,x),∴AF=OE=x,CE=BF=x,OE=AF=x,DM=x,∵四边形OABC是平行四边形,A(3,0),∴OF=3+x,OM=3+x,即D点的坐标为(3+x,),把C、D的坐标代入y=得:k=x•x=(3+x)•,解得:x1=2,x2=0(舍去),∴C(2,2),D(4,),设直线CD解析式为:y=ax+b,则,解得,∴直线CD解析式为:,∴当x=0时,,∴点E的坐标为(0,).故选:B.【考点】本题主要考查了平行四边形的性质、运用待定系数法求函数的解析式以及含度角的直角三角形的性质.根据反比例函数图象经过C、D两点,得出关于x的方程是解决问题的关键.4、B【解析】【分析】设抛物线解析式为y=ax2,由已知可得点B坐标为(45,-78),利用待定系数法进行求解即可.【详解】∵拱高为78米(即最高点O到AB的距离为78米),跨径为90米(即AB=90米),以最高点O为坐标原点,以平行于AB的直线为轴建立平面直角坐标系,∴设抛物线解析式为y=ax2,点B(45,-78),∴-78=452a,解得:a=,∴此抛物线钢拱的函数表达式为,故选B.【考点】本题考查了二次函数的应用,熟练掌握待定系数法是解本题的关键.5、A【解析】【分析】根据抛物线的开口方向、于x轴的交点情况、对称轴的知识可判①②③的正误,再根据函数图象的特征确定出函数的解析式,进而确定不等式,最后求解不等式即可判定④.【详解】解:∵抛物线的开口向上,∴a>0,故①正确;∵抛物线与x轴没有交点∴<0,故②错误∵由抛物线可知图象过(1,1),且过点(3,3)∴8a+2b=2∴4a+b=1,故③错误;由抛物线可知顶点坐标为(1,1),且过点(3,3)则抛物线与直线y=x交于这两点∴<0可化为,根据图象,解得:1<x<3故④错误.故选A.【考点】本题主要考查了二次函数图象的特征以及解不等式的相关知识,灵活运用二次函数图象的特征成为解答本题的关键.6、B【解析】【分析】利用二次函数的定义逐项判断即可.【详解】解:A、y=x2+,含有分式,不是二次函数,故此选项错误;B、y=2﹣x2,是二次函数,故此选项正确;C、y=,含有分式,不是二次函数,故此选项错误;D、y=(x﹣1)2﹣x2=﹣2x+1,是一次函数,故此选项错误.故选:B.【考点】本题考查了二次函数的概念,属于应知应会题型,熟知二次函数的定义是解题关键.二、多选题1、BC【解析】【分析】根据相似三角形的定义,已知条件判定相似的三角形,再利用相似三角形的性质逐一判断选项即可.【详解】解:在正方形中,是的中点,是上一点,且,,..,.,,,..,.②③正确.故选:BC.【考点】本题考查了相似三角形的判定与性质,解题的关键是掌握判定定理有①有两个对应角相等的三角形相似,②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.2、ABD【解析】【分析】直接利用已知点求出一次函数与反比例函数的解析式进而分别分析得出答案.【详解】解:A、设反比例函数的解析式为,把(1,200)代入得,k=200,∴反比例函数的解析式为:,当x=4时,y=50,∴4月份的利润为50万元,正确,符合题意;B、治污改造完成后,从4月到6月,利润从50万到110万,故每月利润比前一个月增加30万元,正确,符合题意;C、当y=100时,则,解得:x=2,则只有3月,4月,5月共3个月的利润低于100万元,不正确,不符合题意.D、设一次函数解析式为:y=kx+b,则,解得:,故一次函数解析式为:y=30x−70,故y=200时,200=30x−70,解得:x=9,则治污改造完成后的第5个月,即9月份该厂利润达到200万元,正确,符合题意.故选:ABD【考点】此题主要考查了一次函数与反比函数的应用,正确得出函数解析式是解题关键.3、ABD【解析】【分析】利用勾股定理先求解再分别求解,从而可得答案.【详解】解:由勾股定理得:所以:,,,,故A,B,D符合题意,C不符合题意;故选:ABD【考点】本题考查的是锐角三角函数的定义及计算,掌握锐角三角函数的定义是解题的关键.4、ABD【解析】【分析】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=
5时,都是y
=
7,由抛物线的对称性可知:抛物线的对称轴为直线x=,根据对称轴和图表可得到顶点坐标,抛物线与y轴的交点坐标,抛物线与x轴的另一个交点坐标以及x=﹣1时,对应的函数值,判断即可.【详解】由已知二次函数y=ax2+bx+c的自变量x与函数值y的部分对应值可知:x=-3与x=
5时,都是y
=
7,由抛物线的对称性可知:抛物线的对称轴为直线x=,抛物线的顶点坐标为(1,-
9),A正确,符合题意;由图表可知抛物线与y轴的交点坐标为(0,-8),B正确,符合题意;抛物线过点(-2,0),根据抛物线的对称性可知:抛物线与x轴的另一个交点坐标为(4,0),C错误,不符合题意;由抛物线的对称性可知:当x=-1时,对应的函数值与x=3时相同,对应的函数值y
=-5,D正确,符合题意,故答案为:ABD.【考点】此题主要考查了二次函数的性质,解题的关键是熟练掌握抛物线的图象和性质,同时会根据图象得到信息.5、BCD【解析】【分析】根据相似三角形的判定方法一一判断即可.【详解】A.有一个角是40°的两个等腰三角形,当40°的角为等腰三角形的底角,当40°的角为等腰三角形顶角,两个三角形内角分别为40°、40°、100°和40°、70°、70°,则两三角形不相似,故选项A不合题意B.等腰直角三角形的内角均为45°,45°,90°,根据三角形相似判定方法等腰直角三角形有两组角对应相等,两个三角形相似,一定相似,故选项B符合题意;C.∵100°>90°,∴100°的角只能是等腰三角形的顶角,另两个角分别为40°,40°,根据三角形相似判定定理,有两组角对应相等的三角形相似,故选项C符合题意;D.∵等边三角形的内角都是60°,根据三角形相似判定定理,两个等边三角形有两个角对应相等,两个三角形相似,故选项D符合题意.故选:BCD.【考点】考查相似三角形的判定方法,掌握相似三角形判定的4种方法是解题的关键.6、BCD【解析】【分析】根据二次函数的性质、方程与二次函数的关系、函数与不等式的关系、坐标系内直线的平移、利用配方法求二次三项式的最值即可一一判断.【详解】解:由图象可知,,则,故A选项错误;由图象可知,直线与抛物线只有一个交点,则方程有两个相等的实根,故B选项正确;当时,抛物线由最大值,则,即,故C选项正确;设直线AB的表达式为,且A(1,3),B(4,0)在直线上,则,解得,,即,由抛物线的对称轴为得,则,即,又A(1,3),B(4,0)在抛物线上,则,解得,,将直线向上平移与抛物线有一个交点时至,要求点P到直线AB的最大距离,即点P为直线与抛物线的交点,过点作于,轴,如图所示,由直线AB可得,为等腰直角三角形,又直线由直线平移得到,且轴,,,是等腰直角三角形,由平移的性质可设直线的表达式为,当与抛物线有一个交点时,即,整理得,由于只有一个交点,则,解得,即直线AB向上平移了:,则,则,点P到直线AB的最大距离,故D选项正确,故选BCD.【考点】本题考查了二次函数的图象及性质、方程与二次函数的关系、函数与不等式的关系、平面直角坐标系内直线的平移,解题的关键学会利用函数图象解决问题,灵活运用相关知识解决问题,本题难点在于要求抛物线上的点到直线的最大距离即求直线平移至与抛物线有一个交点时交点到直线的距离.7、ABCD【解析】【分析】根据同角的余角相等判断A;根据三角函数的定义判断B;根据相似三角形的判定和性质判断C、D.【详解】解:∵∠A=90°,AD⊥BC,∴∠B=∠α=90°−∠C,∴sinα=sinB,A正确;∵α+β=90°,∴sinα=cosβ,B正确;∵,,∠B=∠α,∠ADB=∠CDA=90°,∴,,∴AD2=BD•DC,AB2=BD•BC,C、D正确;故选:ABCD.【考点】本题考查的是相似三角形的判定与性质、锐角三角函数的性质,熟练掌握相关知识是解题关键.三、填空题1、【解析】【分析】利用比例的性质进行变形,然后代入代数式中合并约分即可.【详解】解:∵,∴,则.故答案为:.【考点】本题考查比例问题,关键掌握比例的性质,会利用性质把比例式进行恒等变形,会根据需要选择灵活的比例式解决问题.2、4【解析】【分析】由A、B坐标可得对称轴,由顶点在x轴上可得,求得b=﹣2(m+1),c=(m+1)2,即可得出y=x2﹣2(m+1)x+(m+1)2,把A的坐标代入即可求得n的值.【详解】解:∵点A(m﹣1,n)和点B(m+3,n)均在二次函数y=x2+bx+c图象上,∴,∴b=﹣2(m+1),∵二次函数y=x2+bx+c的顶点在x轴上,∴,∴b2﹣4c=0,∴[﹣2(m+1)]2﹣4c=0,∴c=(m+1)2,∴y=x2﹣2(m+1)x+(m+1)2,把A的坐标代入得,n=(m﹣1)2﹣2(m+1)(m﹣1)+(m+1)2=4,故答案为:4.【考点】本题考查了二次函数的性质,二次函数的顶点坐标,表示出b、c的值是解题的关键.3、【解析】【分析】设BC=a,则AC=2a,然后利用正方形的性质求得CE、CG的长、∠GCD=ECD=45°,进而说明△ECG为直角三角形,最后运用正切的定义即可解答.【详解】解:设BC=a,则AC=2a∵正方形∴EC=,∠ECD=同理:CG=,∠GCD=
∴.故答案为.【考点】本题考查了正方形的性质和正切的定义,根据正方形的性质说明△ECG是直角三角形是解答本题的关键.4、【解析】【分析】先求出A、B、E的坐标,然后求出半圆的直径为4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,计算即可.【详解】解:,∴点E的坐标为(1,-2),令y=0,则,解得,,,∴A(-1,0),B(3,0),∴AB=4,由于E为定点,P是半圆AB上的动点,N为EP的中点,所以N的运动路经为直径为2的半圆,如图,∴点运动的路径长是.【考点】本题属于二次函数和圆的综合问题,考查了运动路径的问题,熟练掌握二次函数和圆的基础是解题的关键.5、4.5【解析】【分析】由三角形的重心的性质即可得出答案.【详解】解:∵AB=AC,AD⊥BC于D,∴AD是△ABC的中线,∵G是△ABC的重心,∴AG=2GD,∵AG=9cm,∴GD=4.5cm,故答案为:4.5.【考点】本题考查了三角形的重心,三角形三条中线的交点叫做三角形的重心,三角形的重心到一个顶点的距离等于它到对边中点距离的两倍.6、或【解析】【分析】(1)分别在、、中应用含角的直角三角形的性质以及勾股定理求得,,再根据垂直平分线的性质、等边三角形的判定和性质、等腰三角形的判定求得,最后利用线段的和差即可求得答案;根据垂直平分线的性质、全等三角形的判定和性质、分线段成比例定理可证得,然后根据平行线的性质、相似三角形的判定和性质列出方程,解方程即可求得,最后利用线段的和差即可求得答案.【详解】解:①当时,如图1:∵在中,,,∴∴∵,∴∵∴∴在中,设,则∵∴∴∴,∵垂直平分线段∴∵∴是等边三角形∴∴∴;②当时,连接、交于点,过点作于,如图2:设,则,∵垂直平分线段,点是的中点∴∵∴∵∵∴垂直平分线段∴∵,∴∴∵∴,∴∴∴∴∴∴∴.∴综上所述,满足条件的的值为6或.故答案是:6或【考点】本题考查了垂直平分线的性质和判定、含角的直角三角形的性质、勾股定理、全等三角形的判定和性质、平行线的判定和性质、相似三角形的判定和性质、等边三角形的判定和性质等,渗透了逻辑推理的核心素养以及分类讨论的数学思想.7、3【解析】【分析】根据二次函数的定义:一般地,形如(a、b、c是常数且a≠0)的函数叫做二次函数,进行求解即可.【详解】解:∵抛物线是二次函数,∴,∴,故答案为:3.【考点】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义.四、解答题1、(1);(2)售价60元时,周销售利润最大为4800元;(3)【解析】【分析】(1)①依题意设y=kx+b,解方程组即可得到结论;(2)根据题意得,再由表格数据求出,得到,根据二次函数的顶点式,求出最值即可;(3)根据题意得,由于对称轴是直线,根据二次函数的性质即可得到结论.【详解】解:(1)设,由题意有,解得,所以y关于x的函数解析式为;(2)由(1),又由表可得:,,.所以售价时,周销售利润W最大,最大利润为4800;(3)由题意,其对称轴,时上述函数单调递增,所以只有时周销售利润最大,..【考点】本题考查了二次函数在实际生活中的应用,重点是掌握求最值的问题.注意:数学应用题来源于实践,用于实践,在当今社会市场经济的环境下,应掌握一些有关商品价格和利润的知识,总利润等于总收入减去总成本,然后再利用二次函数求最值.2、(1)30°;(2)【解析】【分析】(1)由△ABE≌△ACF得BE=CF,用x的代数式表示S,得到E为BC中点时S最大,从而可求∠FEC度数;(2)根据△ECF的最大面积是2列方程即可得答案.【详解】解:(1)设等边△ABC边长是,过F作FD⊥BC于D,∵等边△ABC,等边△AEF,∴AB=AC,AE=AF,∠BAC=∠ABC=∠ACB=∠EAF=∠AEF=60°,∴∠BAE=∠CAF,∴△ABE≌△ACF(SAS),∴CF=BE=x,∠ACF=∠ABE=60°,∠FCD=180°﹣∠ACB﹣∠ACF=60°,FD=CF•sin60°=,S△ECF=∴当△ECF的面积最大时x=-时,即E是BC的中点,S△ECF的最大值为∵E是BC的中点∴AE⊥BC,∠AEB=90°∴∠FEC=180°﹣∠AEB﹣∠AEF=30°(2)由图可知S△ECF的最大值是2,∴=2解得a=4或a=-4(舍去)∴等边△ABC的边长为4.【考点】本题考查等边三角形及二次函数的综合知识,解题关键是证明△ABE≌△ACF,用x的代数式表示△ECF的面积.3、(1)y=4x2﹣7x+1;(2)y=﹣2(x﹣2)2+3.【解析】【分析】(1)
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2023年度会计硕士练习题附参考答案详解【培优】
- 美容化妆人员经典例题附答案详解【培优B卷】
- 应急出口培训课件
- 2025年收银审核员考前冲刺试卷含答案详解(培优B卷)
- 2025年高校教师资格证之《高等教育法规》考试题库及1套完整答案详解
- 防晒与皮肤癌预防
- 2024-2025学年度注册电气工程师试题附答案详解【综合卷】
- 旅行中传染病风险评估与防护护理指南
- 《就业指导与实训学习指导与练习》参考答案
- 2025年包头市东河区机关所属事业单位春季引进51名高层次和紧缺急需人才笔试高频难、易错点备考题库及参考答案详解1套
- 煤矿安全规程2025版解读
- 尿培养的采集
- 具有法律效应的还款协议书6篇
- 东航空乘英语考试题目及答案
- 2025绿植租赁协议(简易版)
- T-AOPA0062-2024电动航空器电推进系统动力电机控制器技术规范
- 《三级工学一体化师资培训》课件-第四课:教学活动策划
- 2025年全国企业员工全面质量管理知识竞赛题及参考答案
- 2025年秋季开学典礼诗歌朗诵稿:纪念抗战胜利八十周年
- 2025年广东省中考英语试卷深度评析及2026年备考策略
- 适老化家装设计
评论
0/150
提交评论