考点解析-山东省滕州市七年级上册整式及其加减重点解析试题(含详解)_第1页
考点解析-山东省滕州市七年级上册整式及其加减重点解析试题(含详解)_第2页
考点解析-山东省滕州市七年级上册整式及其加减重点解析试题(含详解)_第3页
考点解析-山东省滕州市七年级上册整式及其加减重点解析试题(含详解)_第4页
考点解析-山东省滕州市七年级上册整式及其加减重点解析试题(含详解)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省滕州市七年级上册整式及其加减重点解析考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列变形正确的是()A.B.C.D.2、下列去括号正确的是(

).A. B.C. D.3、小红要购买珠子串成一条手链,黑色珠子每个a元,白色珠子每个b元,要串成如图所示的手链,小红购买珠子应该花费(

)A.(3a+4b)元 B.(4a+3b)元 C.4(a+b)元 D.3(a+b)元4、若单项式am﹣1b2与的和仍是单项式,则nm的值是()A.3 B.6 C.8 D.95、一列火车长米,以每秒米的速度通过一个长为米的大桥,用代数式表示它完全通过大桥(从车头进入大桥到车尾离开大桥)所需的时间为()A.秒 B.秒 C.秒 D.秒6、下列说法中正确的有(

)个.①的系数是7;②与没有系数;③的次数是5;④的系数是;⑤的次数是;⑥的系数是.A.0 B.1 C.2 D.37、下列各正方形中的四个数之间都有相同的规律,根据此规律,x的值为(

)A.135 B.153 C.170 D.1898、已知,当时,则的值是(

)A. B. C. D.9、单项式2a3b的次数是()A.2 B.3 C.4 D.510、下列代数式中单项式共有(

).A.2个 B.4个 C.6个 D.8个第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、多项式是关于的四次三项式,则________________2、一个多项式M减去多项式,小马虎却误解为先加上这个多项式,结果,得,则正确的结果是________.3、古希腊的毕达哥拉斯学派对整数进行了深入的研究,尤其注意形与数的关系,“多边形数”也称为“形数”,就是形与数的结合物.用点排成的图形如下:其中:图①的点数叫做三角形数,从上至下第一个三角形数是1,第二个三角形数是,第三个三角形数是,……图②的点数叫做正方形数,从上至下第一个正方形数是1,第二个正方形数是,第三个正方形数是,……由此类推,图④中第五个正六边形数是______.4、观察:第1个等式,第2个等式,第3个等式,第4个等式…猜想:第n个等式是________.5、在等号右边填上“”或“”号,使等式成立:(1)________;(2)________;(3)________;(4)________;(5)________;(6)________.6、为计算1+2+22+23+…+22019,可另S=1+2+22+23+…+22019,则2S=2+22+23+24+…+22020,因此2S-S=22020-1,根据以上解题过程,猜想:1+3+32+33+…+32019=_________.7、若单项式与单项式是同类项,则___________.8、多项式的项是___________.9、某书店新进了一批图书,甲、乙两种书的进价分别为4元/本、5元/本.现购进m本甲种书和n本乙种书,共付款Q元.(1)用含m,n的代数式表示______;(2)若共购进本甲种书及本乙种书,______(用科学记数法表示).10、计算:_________.三、解答题(6小题,每小题10分,共计60分)1、如图,数轴上的三个点A,B,C分别表示实数a,b,c.(1)如果点C是的中点,那么a,b,c之间的数量关系是________;(2)比较与的大小,并说明理由;(3)化简:.2、如图,将连续的奇数1,3,5,7…按图1中的方式排成一个数表,用一个十字框框住5个数,这样框出的任意5个数(如图2)分别用a,b,c,d,x表示.(1)若x=17,则a+b+c+d=.(2)移动十字框,用x表示a+b+c+d=.(3)设M=a+b+c+d+x,判断M的值能否等于2020,请说明理由.3、计算:3(x2﹣2xy)﹣(x2﹣6xy)﹣4y.4、指出下列各式中,哪些是单项式、哪些是多项式、哪些是整式?填在相应的横线上:①;②-x;③;④10;⑤6xy+1;⑥;⑦m2n;⑧2x2-x-5;⑨a7;⑩单项式:____________________________;多项式:________________________;整式:________________________;5、计算:(1).(2).6、问题提出:将一根长度是(的偶数)的细绳按照如图所示的方法对折次(),然后从重叠的细绳的一端开始,每隔1厘米(两端弯曲部分的绳长忽略不计)剪1刀,共剪刀(的整数),最后得到一些长和长的细绳.如果长的细绳有222根,那么原来的细绳的长度是多少?问题探究:为了解决问题,我们可以先从最简单的情形入手,再逐次递进,从中找出解决问题的方法.探究一:对折1次,可以看成有根绳子重叠在一起,如果剪1刀(如图①),左端出现了2根长的细绳,右端出现了根长的细绳,所以原绳长为;如果剪2刀(如图②),左端仍有2根长的细绳,中间有根长的细绳,右端仍有根长的细绳,所以原绳长为;如果剪3刀(如图③),左端仍有2根长的细绳,中间有根长的细绳,右端仍有根长的细绳,所以原绳长为;以此类推,如果剪刀,左端仍有2根长的细绳,中间有根长细绳,右端仍有根长的细绳,所以,原绳长为.探究二:对折2次,可以看成有根绳子重叠在一起,如果剪1刀(如图④),左端出现了2根长的细绳,两端共出现了根长的细绳,所以原绳长为;如果剪2刀(如图⑤),左端仍有2根长的细绳,中间有根长的细绳,两端仍有根长的细绳,所以原绳长为;如果剪3刀(如图⑥),左端仍有2根长的细绳,中间有根长的细绳,两端共有根长的细绳,所以原绳长为;以此类推,如果剪刀,左端仍有2根长的细绳,中间有根长的细绳,两端仍有根长的细绳,所以原绳长为.探究三:对折3次(如图⑦),可以看成有根绳子重叠在一起,如果剪刀,左端有2根长的细绳,中间有根长的细绳,两端有根长的细绳,所以原绳长为cm.(1)总结规律:对折次,可以看成有根绳子重叠在一起,如果剪刀,左端有根长的细绳,中间会有根长的细绳,两端会有根长的细绳,所以原绳长为.(2)问题解决:如果长的细绳有222根,根据以上探究过程可以推算出细绳可能被对折了次,被剪了刀,原来的细绳的长度是.(3)拓展应用:如果长的细绳有2024根,那么原来的细绳的长度是.-参考答案-一、单选题1、C【解析】【分析】根据去括号和添括号法则解答.【详解】A、原式=−a−2,故本选项变形错误.B、原式=−a+,故本选项变形错误.C、原式=−(a−1),故本选项变形正确.D、原式=−(a−1),故本选项变形错误.故选:C.【考点】本题主要考查了去括号与添括号,①去括号法则是根据乘法分配律推出的;②去括号时改变了式子的形式,但并没有改变式子的值;③添括号时,如果括号前面是正号,括到括号里的各项都不变号,如果括号前面是负号,括号里的各项都改变符号.添括号与去括号可互相检验.2、D【解析】【分析】根据去括号的法则逐项判断即可求解.【详解】解:A、,故本选项错误,不符合题意;B、,故本选项错误,不符合题意;C、,故本选项错误,不符合题意;D、,故本选项正确,符合题意.故选:D.【考点】本题主要考查了去括号法则,熟练掌握去括号法则——如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反是解题的关键.3、A【解析】【分析】直接利用两种颜色的珠子的价格进而求出手链的价格.【详解】解:∵黑色珠子每个a元,白色珠子每个b元,∴要串成如图所示的手链,小红购买珠子应该花费为:3a+4b.故选A.【考点】本题考查列代数式,正确得出各种颜色珠子的数量是解题关键.4、C【解析】【分析】首先可判断单项式am-1b2与a2bn是同类项,再由同类项的定义可得m、n的值,代入求解即可.【详解】解:∵单项式am-1b2与a2bn的和仍是单项式,∴单项式am-1b2与a2bn是同类项,∴m-1=2,n=2,∴m=3,n=2,5、A【解析】【分析】【详解】火车走过的路程为米,火车的速度为米秒,火车过桥的时间为(秒.故选:.6、B【解析】【分析】根据单项式的次数和系数概念,逐一判断各个选项即可.【详解】解:①的系数是-7,故原说法错误;②与系数分别是:-1,1,故原说法错误;③的次数是6,故原说法错误;④的系数是,故原说法正确;⑤的次数是,故原说法错误;⑥的系数是,故原说法错误.故选B.【考点】本题主要考查单项式的相关概念,掌握单项式的次数和系数定义是解题的关键.7、C【解析】【分析】由观察发现每个正方形内有:可求解,从而得到,再利用之间的关系求解即可.【详解】解:由观察分析:每个正方形内有:由观察发现:又每个正方形内有:故选C.【考点】本题考查的是数字类的规律题,掌握由观察,发现,总结,再利用规律是解题的关键.8、A【解析】【分析】根据已知,得a=5b,c=5d,将其代入即可求得结果.【详解】解:∵∴a=5b,c=5d,∴故选:A【考点】本题考查的是求代数式的值,应先观察已知式,求值式的特征,采用适当的变形,作为解决问题的突破口.9、C【解析】【详解】分析:根据单项式的性质即可求出答案.详解:该单项式的次数为:3+1=4故选C.点睛:本题考查单项式的次数定义,解题的关键是熟练运用单项式的次数定义,本题属于基础题型.10、C【解析】【分析】根据单项式的定义,即可得到答案.【详解】解:中,单项式有,共6个,故选C.【考点】本题主要考查单项式的定义,掌握“数字和字母,字母和字母的乘积叫做单项式,单独的字母和数字也叫单项式”是解题的关键.二、填空题1、【解析】【分析】根据多项式中次数最高的项的次数叫做多项式的次数进行分析即可.【详解】解:∵多项式+2x-5是关于x的四次三项式,∴m﹣1=4,解得m=5,故答案为:5.【考点】此题考查的是多项式的次数,掌握多项式的次数的定义是解决此题的关键.2、【解析】【分析】(1)根据题意可得,求出M,然后求出即可;(2)设,,根据即,因此所求的.【详解】【方法1】由题意,得.易得.∴.则正确的结果是.【方法2】设,.由题意,得,故,因此所求的.∴.则正确的结果是.【考点】在整式运算应用过程中,我们可以发现,在尽量避免烦琐计算的同时要运用一些整体代入的思想,这样可以有效地将计算过程缩短,达到化繁为简的目的.方法二在进行运算之前,先采用换元的思想将运算过程简化为,这样能在优化算法的同时减少计算量.3、45【解析】【分析】根据题意找到图形规律,即可求解.【详解】根据图形,规律如下表:三角形3正方形4五边形5六边形6M边形m11111121+21+211+2111+21111+231+2+31+2+31+21+2+31+21+21+2+31+21+21+21+2+341+2+3+41+2+3+41+2+31+2+3+41+2+31+2+31+2+3+41+2+31+2+31+2+31+2+3+4n由上表可知第n个M边形数为:,整理得:,则有第5个正六边形中,n=5,m=6,代入可得:,故答案为:45.【考点】本题考查了整式--图形类规律探索,理解题意是解答本题的关键.4、(2n-1)(2n+1)=(2n)2-1【解析】【分析】根据题目所给示例总结出相应的规律即可;【详解】解:第1个等式,第2个等式,第3个等式,第4个等式,第n个等式(2n-1)(2n+1)=(2n)2-1;故答案为:(2n-1)(2n+1)=(2n)2-1.【考点】本题主要考查整式的应用,根据示例总结出相关规律是解题的关键.5、

【解析】【分析】(1)-(4)直接利用去括号或添括号法则分别判断得出答案;(5)(6)根据幂的意义即可得出答案.【详解】解:(1);(2);(3);(4);(5);(6).故答案为:-;+;-;-;+;+.【考点】此题主要考查了去括号法则:如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反(添括号一样);任何非零数的偶次幂符号都是正数,任何一对相反数的偶次幂值相等,奇次幂互为相反数.6、【解析】【分析】根据题意设M=1+3+32+33+…+32019,则可得3M=3+32+33+34+…+32020,即可得3M-M的值,计算即可得出答案.【详解】解:设M=1+3+32+33+…+32019,则3M=3+32+33+34+…+32020,3M-M=3+32+33+34+…+32020-(1+3+32+33+…+32019),2M=32020-1,则M=,故答案为:.【考点】本题主要考查了数字的变化规律,准确理解题目所给的例题解法进行求解是解决本题的关键.7、4【解析】【分析】根据同类项的定义:所含字母相同,相同字母的指数也相同的单项式是同类项.可列式子m-1=2,n+1=2,分别求出m,n的值,再代入求解即可.【详解】解:∵单项式与单项式是同类项,∴m-1=2,n+1=2,解得:m=3,n=1.∴m+n=3+1=4.故答案为:4.【考点】本题考查了同类项的概念,正确理解同类项的定义是解题的关键.8、,,【解析】【分析】根据先把多项式写成和的形式,进而即可得到答案.【详解】解:∵=+,∴的项是:,,.故答案是:,,.【考点】本题主要考查多项式相关概念,掌握多项式中项的定义是解题的关键.9、

4m+5n

【解析】【分析】(1)根据题意列代数式即可;(2)根据题意列出算式进行化简即可.【详解】解:(1)由题意,得Q=4m+5n;(2)Q=4×+5×=20×+15×=35×=.故答案为:4m+5n,.【考点】本题考查了整式中的列代数式,科学记数法的运算,正确地理解能力和计算能力是解决问题的关键.10、【解析】【分析】按照合并同类项法则合并即可.【详解】解:,故答案为:【考点】本题考查了合并同类项,解题关键是熟练运用合并同类项法则进行计算.三、解答题1、(1)2c=a+b(答案不唯一)(2);理由见解析(3)【解析】【分析】(1)利用C是的中点得到AC=BC,可得,化简即可;(2)通过数轴得出a,b,c的大小关小,从而得出b-4和c+1的大小;(3)先判断a-2,b+1,c的正负,然后根据绝对值的性质化简即可.(1)∵C是的中点,且数轴上的三个点A,B,C分别表示实数a,b,c,∴AC=BC,∴,∴2c=a+b,故答案是:2c=a+b;(2),理由如下:由数轴知:,,,∴b-4<-5,c+1>0,∴;(3)由数轴知:,,,∴a-2<0,b+1<0,∴.【考点】本题考查了数轴的意义,绝对值以及有理数大小的比较,掌握绝对值的性质以及有理数的加减法则是解题的关键.2、(1)68(2)4x(3)M的值不能等于2020【解析】【分析】(1)直接求和;(2)a+b+c+d=(x﹣12)+(x﹣2)+(x+2)+(x+12),化简即可;(3)令M=2020,则4x+x=2020,求出x,若x是奇数就说明成立,否则就不能为2020.【详解】观察图1,可知:a=x﹣12,b=x﹣2,c=x+2,d=x+12.(1)当x=17时,a=5,b=15,c=19,d=29,∴a+b+c+d=5+15+19+29=68.故答案为68.(2)∵a=x﹣12,b=x﹣2,c=x+2,d=x+12,∴a+b+c+d=(x﹣12)+(x﹣2)+(x+2)+(x+12)=4x.故答案为4x.(3)M的值不能等于2020,理由如下:令M=2020,则4x+x=2020,解得:x=404.∵404是偶数不是奇数,∴与题目x为奇数的要求矛盾,∴M不能为2020.【考点】本题考核知识点:观察总结规律.解题关键点:用式子表示规律.3、【解析】【分析】根据整式的加减运算,对式子进行求解即可.【详解】解:【考点】此题考查了整式的加减运算,解题的关键是掌握整式加减运算法则.4、②④⑦⑨;①③⑤⑧;①②③④⑤⑦⑧⑨.【解析】【分析】,的分母中含有字母,所以它们既不是单项式,也不是多项式,再根据单项式、多项式和整式的概念来分类.【详解】解:单项式有:-x,10,m2n,a7;多项式有:,,6xy+1,2x2-x-5;整式有:,-x,,10,6xy+1,m2n,2x2-x-5,a7.【考点】本题主要考查了整式的定义,掌握单项式、多项式和整式的概念和关系是解答此题的关键,注意分式与整式的区别在于分母中是否含有字母.5、(1

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论