




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、如图,Rt△ABC中,,,,D为BC的中点,若动点E以1cm/s的速度从A点出发,沿AB向B点运动,设E点的运动时间为t秒,连接DE,当以B、D、E为顶点的三角形与△ABC相似时,t的值为()A.2或3.5 B.2或3.2 C.2或3.4 D.3.2或3.42、锐角α满足,且,则α的取值范围为()A.30°<α<45° B.45°<α<60° C.60°<α<90° D.30°<α<60°3、反比例函数图象的两个分支分别位于第一、三象限,则一次函数的图象大致是(
)A. B.C. D.4、已知点都在反比例函数的图象上,且,则下列结论一定正确的是(
)A. B. C. D.5、在下列关于x的函数中,一定是二次函数的是(
)A.y=x2
B.y=ax2+bx+c
C.y=8x
D.y=x2(1+x)6、如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东方向,且与他相距,则图书馆A到公路的距离为(
)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、已知反比例函数y=﹣,则下列结论错误的是()A.点(1,2)在它的图象上 B.其图象分别位于第一、三象限C.y随x的增大而增大 D.如果点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上2、如图,点P在函数(x>0,k>2,k为常数)的图象上,PC⊥x轴交的图象于点A,PD⊥y轴于点D,交,当点P在(x>0,k>2,k为常数)的图象上运动时(
)A.ODB与OCA的面积相等 B.四边形PAOB的面积不会发生变化C.PA与PB始终相等 D.3、已知二次函数y=(x+m)2﹣n的图象如图所示,则一次函数y=mx+n与反比例函数y=的图象不可能是()A. B.C. D.4、二次函数y=ax2+bx+c(a≠0)图象如图,下列结论中正确的有()A.abc>0 B.3a+c<0 C.a+b≥am2+bm D.a﹣b+c>0 E.若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=25、下列四个命题中正确的命题有(
)A.两个矩形一定相似 B.两个菱形都有一个角是40°,那么这两个菱形相似C.两个正方形一定相似 D.有一个角相等的两个等腰梯形相似6、如图,二次函败y=ax2+bx+c(a、b、c为常数,且a≠0)的图象与x轴的交点的横坐标分别为﹣1、3,则下列结论中正确的有()A.abc<0 B.2a+b=0 C.3a+2c>0 D.对于任意x均有ax2﹣a+bx﹣b≥07、运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线.不考虑空气阻力,足球距离地面的高度h(单位:m)与足球被踢出后经过的时间t(单位:s)之间的关系如下表:t01234567…h08141820201814…下列结论正确的是(
)A.足球距离地面的最大高度为20mB.足球飞行路线的对称轴是直线C.足球被踢出9s时落地D.足球被踢出1.5s时,距离地面的高度是11m第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、如图,,点在上,与交于点,,,则的长为.2、在平面直角坐标系中,已知和是抛物线上的两点,将抛物线的图象向上平移n(n是正整数)个单位,使平移后的图象与x轴没有交点,则n的最小值为_____.3、如果一条抛物线与轴有两个交点,那么以该抛物线的顶点和这两个交点为顶点的三角形称为这条拋物线的“特征三角形”.已知的“特征三角形”是等腰直角三角形,那么的值为_________.4、把抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为___.5、如图是用杠杆撬石头的示意图,是支点,当用力压杠杆的端时,杠杆绕点转动,另一端向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的端必须向上翘起,已知杠杆的动力臂与阻力臂之比为6:1,要使这块石头滚动,至少要将杠杆的端向下压______.6、如图,在平面直角坐标系中,一次函数的图像分别交、轴于点、,将直线绕点按顺时针方向旋转,交轴于点,则直线的函数表达式是__________.7、中,,,,则边的长为_______.四、解答题(6小题,每小题10分,共计60分)1、在美化校园的活动中,某兴趣小组用总长为米的围栏材料,一面靠墙,围成一个矩形花园,墙长米,设的长为米,矩形花园的面积为平方米,当为多少时,取得最大值,最大值是多少?2、如图,在正方形ABCD中,对角线AC与BD相交于点O,点E是BC上的一个动点,连接DE,交AC于点F.(1)如图①,当时,求的值;(2)如图②,当点E是BC的中点时,过点F作FG⊥BC于点G,求证:CG=BG.
3、如图,已知中,,点在边上,满足求证:(1)(2).4、如图所示,抛物线与x轴相交于A、B两点,与y轴相交于点C,点M为抛物线的顶点.(1)求点C及顶点M的坐标;(2)在抛物线的对称轴上找一点P,使得PA+PC的值最小,请求出点P的坐标并求出最小值;(3)若点N是第四象限内抛物线上的一个动点,连接BN、CN,求面积的最大值及此时点N的坐标.5、顶点为D的抛物线y=﹣x2+bx+c交x轴于A、B(3,0),交y轴于点C,直线y=﹣x+m经过点C,交x轴于E(4,0).(1)求出抛物线的解析式;(2)如图1,点M为线段BD上不与B、D重合的一个动点,过点M作x轴的垂线,垂足为N,设点M的横坐标为x,四边形OCMN的面积为S,求S与x之间的函数关系式,并求S的最大值;(3)点P为x轴的正半轴上一个动点,过P作x轴的垂线,交直线y=﹣x+m于G,交抛物线于H,连接CH,将△CGH沿CH翻折,若点G的对应点F恰好落在y轴上时,请直接写出点P的坐标.6、已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.-参考答案-一、单选题1、A【解析】【分析】求出AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,△EBD∽△ABC,得出AE=BE=AB=2cm,即可得出t=2s;②当∠DEB=∠ACB=90°时,证出△DBE∽△ABC,得出∠BDE=∠A=30°,因此BE=BD=cm,得出AE=3.5cm,t=3.5s;即可得出结果.【详解】解:∵∠ACB=90°,∠ABC=60°,∴∠A=30°,∴AB=2BC=4cm,分两种情况:①当∠EDB=∠ACB=90°时,DE∥AC,所以△EBD∽△ABC,E为AB的中点,AE=BE=AB=2cm,∴t=2s;②当∠DEB=∠ACB=90°时,∵∠B=∠B,∴△DBE∽△ABC,∴∠BDE=∠A=30°,∵D为BC的中点,∴BD=BC=1cm,∴BE=BD=0.5cm,∴AE=3.5cm,∴t=3.5s;综上所述,当以B、D、E为顶点的三角形与△ABC相似时,t的值为2或3.5,故选A.【考点】本题考查了相似三角形的判定、平行线的性质、含30°角的直角三角形的性质等知识;熟记相似三角形的判定方法是解决问题的关键,注意分类讨论.2、B【解析】【分析】根据特殊角的三角函数值和正弦函数随锐角的增大而增大、正切函数随锐角的增大而增大即可解答.【详解】解:∵,且,∴45°﹤α﹤90°∵,且∴0°<α<60°∴45°<α<60°.故选:B.【考点】本题考查特殊角的三角函数值、锐角三角函数的增减性,熟记特殊角的三角函数值,掌握锐角三角函数的增减性是解答的关键.3、D【解析】【分析】根据题意可得,进而根据一次函数图像的性质可得的图象的大致情况.【详解】反比例函数图象的两个分支分别位于第一、三象限,∴一次函数的图象与y轴交于负半轴,且经过第一、三、四象限.观察选项只有D选项符合.故选D【考点】本题考查了反比例函数的性质,一次函数图像的性质,根据已知求得是解题的关键.4、C【解析】【分析】根据反比例函数的性质,可得答案.【详解】反比例函数中,=-2020<0,图象位于二、四象限,∵a<0,∴P(a,m)在第二象限,∴m>0;∵b>0,∴Q(b,n)在第四象限,∴n<0.∴n<0<m,即m>n,故选:C.【考点】本题考查了反比例函数的性质,利用反比例函数的性质:k<0时,图象位于二四象限是解题关键.5、A【解析】【分析】根据二次函数的定义:y=ax2+bx+c(a≠0.a是常数),可得答案.【详解】解:A、y=x2是二次函数,故A符合题意;B、a=0时不是二次函数,故B不符合题意,C、y=8x是一次函数,故C不符合题意;D、y=x2(1+x)不是二次函数,故D不符合题意;故选A.【考点】本题考查了二次函数的定义,利用二次函数的定义是解题关键,注意a是不等于零的常数.6、A【解析】【分析】根据题意可得△OAB为直角三角形,∠AOB=30°,OA=200m,根据三角函数定义即可求得AB的长.【详解】解:由已知得,∠AOB=90°60°=30°,OA=200m.则AB=OA=100m.故选:A.【考点】本题主要考查了解直角三角形的应用——方向角问题,正确记忆三角函数的定义是解决本题的关键.二、多选题1、ABC【解析】【分析】根据反比例函数图象上点的坐标特征、反比例函数的性质解答.【详解】A、将x=1代入y=-得到y=-2≠2,∴点(1,2)不在反比例函数y=-2x的图象上,故本选项错误;B、因为比例系数为-2,则函数图象过二、四象限,故本选项错误;C、在每一象限内y随x的增大而增大,故本选项错误.D、如果点P(m,n)在它的图象上,则点Q(n,m)也在它的图象上,故本选项正确;故选:ABC.【考点】本题考查了反比例函数的性质,熟悉反比例函数的图象是解题的关键.2、AB【解析】【分析】由反比例函数k的几何意义可判断出各个结论的正误.【详解】解:A.∵点A,B在函数的图象上,∴,故选项A正确;B.∵矩形OCPD、三角形ODB、三角形OCA为定值,则四边形PAOB的面积不会发生变化;故此选项正确.C.PA与PB不一定相等,只有当四边形OCPD是正方形时满足PA=PB,故此选项不正确;D.∵A、B在上,∴S△AOC=S△BOE,∴•OC•AC=•OD•BD,∴OC•AC=OD•BD,∵OC=PD,OD=PC,∴PD•AC=DB•PC,∴.故此选项不正确.故选AB【考点】此题是反比例函数综合题,主要考查了反比例函数(k≠0)中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.3、ABC【解析】【分析】根据二次函数的顶点,可得m,n,根据一次函数的性质,二次函数的性质,可得答案.【详解】解:由二次函数的图象,得−m>0,−n<0,化简,得m<0,n>0,y=mx+n图象经过一二四象限,y=图象位于二四象限,故选:ABC.【考点】本题考查了反比例函数图象、一次函数图象,利用二次函数的性质、反比例函数的性质、一次函数的性质是解题关键.4、BCE【解析】【分析】根据二次函数开口方向、对称轴和函数图像与坐标轴的知识点逐一判断即可;【详解】∵抛物线开口向下,∴,∵抛物线的对称轴为直线,∴,∵抛物线于x轴的交点在x轴上方,∴,∴,故A错误;∵抛物线于x轴的一个交点在与之间,∴当时,,即,故D错误;∴,即,故B正确;∵时,y有最大值,∴,即,故C正确;∵,∴,∴,而,∴,∴,故E正确;故选BCE.【考点】本题主要考查了二次函数图象与系数的关系,结合一元二次方程根与系数的关系判定是解题的关键.5、BC【解析】【分析】根据两个图形相似的性质及判定方法,对应边的比相等,对应角相等,两个条件同时满足来判断正误.【详解】解:A两个矩形对应角都是直角相等,对应边不一定成比例,所以不一定相似,故本小题错误;B两个菱形有一个角相等,则其它对应角也相等,对应边成比例,所以一定相似,故本小题正确;C两个正方形一定相似,正确;D有一个角相等的两个等腰梯形,对应角一定相等,但对应边的比不一定相等,故本小题错误.故选:BC.【考点】本题考查的是相似多边形的判定及菱形,矩形,正方形,等腰梯形的性质及其定义.6、BD【解析】【分析】由抛物线开口方向得到a>0,利用抛物线与x轴的交点问题和抛物线的对称性得到抛物线的对称轴为直线x=1,即-=1,所以b=-2a<0,利用抛物线与y轴的交点位置得到c<0,则可对A进行判断;利用b=-2a可对B进行判断;由于x=-1时,y=0,所以a-b+c=0,则c=-3a,3a+2c=-3a<0,于是可对C进行判断;根据二次函数性质,x=1时,y的值最小,所以a+b+c≤ax2+bx+c,于是可对D进行判断.【详解】解:∵抛物线开口向上,∴a>0,∵抛物线与x轴的交点的坐标分别为(-1,0),(3,0),∴抛物线的对称轴为直线x=1,即-=1,∴b=-2a<0,∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以A错误;∵b=-2a,∴2a+b=0,所以B正确;∵x=-1时,y=0,∴a-b+c=0,即a+2a+c=0,∴c=-3a,∴3a+2c=3a-6a=-3a<0,所以C错误;∵x=1时,y的值最小,∴对于任意x,a+b+c≤ax2+bx+c,即ax2-a+bx-b≥0,所以D正确.故选:BD.【考点】本题考查了二次函数与不等式(组):函数值y与某个数值m之间的不等关系,一般要转化成关于x的不等式,解不等式求得自变量x的取值范围;利用两个函数图象在直角坐标系中的上下位置关系求自变量的取值范围,可作图利用交点直观求解,也可把两个函数解析式列成不等式求解.7、BC【解析】【分析】由题意,抛物线经过(0,0),(9,0),所以可以假设抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,可得h=﹣t2+9t=﹣(t﹣4.5)2+20.25,由此即可一一判断.【详解】解:由题意,抛物线的解析式为h=at(t﹣9),把(1,8)代入可得a=﹣1,∴h=﹣t2+9t=﹣(t﹣4.5)2+20.25,∴足球距离地面的最大高度为20.25m,故A错误,∴抛物线的对称轴t=4.5,故B正确,∵t=9时,h=0,∴足球被踢出9s时落地,故C正确,∵t=1.5时,h=11.25,故D错误.∴正确的有②③,故选:BC【考点】本题考查二次函数的应用、求出抛物线的解析式是解题的关键,属于中考常考题型.三、填空题1、【解析】【分析】根据平行线分线段成比例定理,由AB∥GH,得出,由GH∥CD,得出,将两个式子相加,即可求出GH的长.【详解】解:,,即①,,,即②,①②,得,,,解得.故答案为:【考点】本题考查了平行线分线段成比例定理,熟练运用等式的性质进行计算.本题难度适中.2、4【解析】【分析】通过A、B两点得出对称轴,再根据对称轴公式算出b,由此可得出二次函数表达式,从而算出最小值即可推出n的最小值.【详解】∵A、B的纵坐标一样,∴A、B是对称的两点,∴对称轴,即,∴b=-4.∴抛物线解析式为:.∴抛物线顶点(2,-3).∴满足题意n的最小值为4,故答案为:4.【考点】本题考查二次函数对称轴的性质,顶点式的变形及抛物线的平移,关键在于根据对称轴的性质从题意中判断出对称轴.3、2【解析】【分析】首先求出的顶点坐标和与x轴两个交点坐标,然后根据“特征三角形”是等腰直角三角形列方程求解即可.【详解】解:∵∴,代入得:∴抛物线的顶点坐标为∵当时,即,解得:,∴抛物线与x轴两个交点坐标为和∵的“特征三角形”是等腰直角三角形,∴,即解得:.故答案为:2.【考点】此题考查了二次函数与x轴的交点问题,等腰直角三角形的性质,解题的关键是求出的顶点坐标和与x轴两个交点坐标.4、【解析】【分析】直接根据“上加下减,左加右减”进行计算即可.【详解】解:抛物线向左平移1个单位长度,再向下平移3个单位长度,得到的抛物线的解析式为:,即:故答案为:.【考点】本题主要考查函数图像的平移,熟记函数图像的平移方式“上加下减,左加右减”是解题的关键.5、60【解析】【分析】首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.【详解】解:如图;AM、BN都与水平线垂直,即AM∥BN;易知:△ACM∽△BCN;∴,∵AC与BC之比为6:1,∴,即AM=6BN;∴当BN≥10cm时,AM≥60cm;故要使这块石头滚动,至少要将杠杆的端点A向下压60cm.故答案为:60.【考点】本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.6、【解析】【分析】先根据一次函数求得、坐标,再过作的垂线,构造直角三角形,根据勾股定理和正余弦公式求得的长度,得到点坐标,从而得到直线的函数表达式.【详解】因为一次函数的图像分别交、轴于点、,则,,则.过作于点,因为,所以由勾股定理得,设,则,根据等面积可得:,即,解得.则,即,所以直线的函数表达式是.【考点】本题综合考察了一次函数的求解、勾股定理、正余弦公式,以及根据一次函数的解求一次函数的表达式,要学会通过作辅助线得到特殊三角形,以便求解.7、2【解析】【分析】根据正切定义得到,则可设AB=x,BC=2x,利用勾股定理计算出AC=x,所以x=,解得x=1,然后计算2x即可得到BC的长.【详解】解:如图,∵∠B=90°,∴,设AB=x,则BC=2x,∴,∴x=,解得x=1,∴BC=2x=2.故答案为:2.【考点】本题考查了解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.四、解答题1、80【解析】【分析】由题意可得出:,再利用二次函数增减性求得最值【详解】.,当时,有最大值,最大值【考点】此题主要考查了二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.2、(1)=;(2)证明见解析.【解析】【分析】(1)根据正方形的性质和相似三角形的判定定理,得△CEF∽△ADF,可得=,进而即可得到结论;(2)由AD∥CB,点E是BC的中点,得△EFC∽△DFA.CF:AF=EC:AD,由FG//AB,得CG:BG=CF:AF,进而即可得到结论.【详解】(1)∵,∴=.∵四边形ABCD是正方形,∴AD∥BC,AD=BC,∴△CEF∽△ADF,∴=,∴==,∴==;(2)∵AD∥CB,点E是BC的中点,∴△EFC∽△DFA.∴CF:AF=EC:AD=1:2,∵FG⊥BC,∴FG//AB,∴CG:BG=CF:AF=1:2,∴CG=BG.【考点】本题主要考查正方形的性质,相似三角形的判定和性质定理以及平行线分线段成比例定理,掌握相似三角形的对应边成比例,是解题的关键.3、(1)见解析;(2)见解析【解析】【分析】(1)证明△ABF∽△ECA,得到,即可得出结论;(2)证明△AEF∽△BAF,得到,即,同理△AEF∽△CEA,得到,即,即可得到结论.【详解】(1)∵AB=AC∴∠B=∠C∵∴,∠AEC=∠B+∠BAE=∠EAF+∠BAE=∠BAF∴△ABF∽△ECA∴∴即结论成立.(2)∵,∠AFE=∠BFA∴△AEF∽△BAF∴即同理:△AEF∽△CEA∴即∴【考点】本题考查了相似三角形的判定与性质,三角形外角的性质;证明三角形相似是解题的关键.4、(1)点的坐标为,点的坐标为;(2)点P的坐标为(1,-4),的最小值为;(3)面积的最大值为,此时点的坐标为.【解析】【分析】(1)令抛物线解析式中即可求出点坐标,将抛物线的一般式化为顶点式,即可求出顶点坐标;(2)根据轴对称的性质可得线段BC与对称轴的交点即为点P,先利用待定系数法求出解析式,由此再求出点P坐标即可;(3)过点作轴的垂线交直线于Q点,设,进而得到点坐标,最后根据求解即可.【详解】解:(1)将代入,得:,∴点的坐标为,,抛物线的顶点的坐标为;(2)如图,设线段BC与对称轴的交点为点P,连接AC,AP,根据轴对称的性质可得:,∴,∵两点之间线段最短,∴此时最小,将代入,得:,解得:,∴点的坐标为,设直线BC的解析式为,将,代入,得:,解得:,∴直线BC的解析式为,∵顶点的坐标为,∴抛物线的对称轴为直线,将代入,得,∴点P的坐标为(1,-4);故此时的最小值为.(3)过点作轴的垂线交直线于点,连接,,如图1所示:设点坐标为,则点坐标为,其中,∴,∴,∵,,∴当时,有最大值为,将代入,得:,∴BCN面积的最大值为,此时点的坐标为.【考点】本题是二次函数综合题目,考查了二次函数的图象和性质、待定系数法求直线的解析式等知识,本题综合性较强,具有一定的难度,熟练掌握二次函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 惠济区消防知识培训课件学校
- 情绪的奥秘课件
- 情感配音基础知识培训班课件
- 清明节移风易俗活动方案
- 幼儿园新生军训活动方案
- 电路实验考试题及答案
- 枣庄中学面试题及答案
- 永赢基金面试题及答案
- 肾畸形护理技巧指南
- 家电公司商标注册管理规章
- 2025年发展对象考试题库附含答案
- 2025医院医疗器械不良事件监测与报告制度
- 企业廉洁管理办法
- 2025年列车长(官方)-高级工历年参考试题库答案解析(5卷套题【单项选择题100题】)
- 高三生物一轮复习课件微专题5电子传递链化学渗透假说及逆境胁迫
- DBJ50-T-306-2024 建设工程档案编制验收标准
- 2025四川雅安荥经县国润排水有限责任公司招聘5人笔试历年参考题库附带答案详解
- 2025中国银行新疆区分行社会招聘笔试备考试题及答案解析
- 动脉置管并发症
- 药品医疗器械试题及答案
- 2025年甘肃省高考历史试卷真题(含答案解析)
评论
0/150
提交评论