难点解析-湖南省韶山市中考数学真题分类(位置与坐标)汇编综合练习试卷(含答案详解)_第1页
难点解析-湖南省韶山市中考数学真题分类(位置与坐标)汇编综合练习试卷(含答案详解)_第2页
难点解析-湖南省韶山市中考数学真题分类(位置与坐标)汇编综合练习试卷(含答案详解)_第3页
难点解析-湖南省韶山市中考数学真题分类(位置与坐标)汇编综合练习试卷(含答案详解)_第4页
难点解析-湖南省韶山市中考数学真题分类(位置与坐标)汇编综合练习试卷(含答案详解)_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖南省韶山市中考数学真题分类(位置与坐标)汇编综合练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、点关于轴对称的点的坐标为(

)A. B. C. D.2、下列四种图形中,对称轴条数最多的是(

)A.等边三角形 B.圆 C.长方形 D.正方形3、点A(5,-4)在第几象限()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、若y轴负半轴上的点P到x轴的距离为2,则点P的坐标为()A.(0,2) B.(2,0) C.(﹣2,0) D.(0,﹣2)5、在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(0,2),点B的坐标为(﹣3,0),则点C到y轴的距离是(

)A.6 B.5 C.4 D.36、下列各点,在第二象限的是(

)A. B. C. D.7、若点在第四象限,则点在(

)A.第一象限 B.第二象限 C.第三象限 D.第四象限8、若点和点关于轴对称,则点在()A.第一象限 B.第二象限C.第三象限 D.第四象限第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图,在△ABC中,点A的坐标为(0,1),点B的坐标为(0,4),点C的坐标为(4,3),点D在第二象限,且△ABD与△ABC全等,点D的坐标是__________.2、在平面直角坐标系中,把点向右平移5个单位得到点,则点的坐标为____.3、若点P(m+1,m)在第四象限,则点Q(﹣3,m+2)在第________象限.4、点在第_____象限.5、如图,在平面直角坐标系中,点A的坐标是(20,0),点B的坐标是(16,0),点C、D在以OA为直径的半圆M上,且四边形OCDB是平行四边形,则点C的坐标为_____.6、若点A(a,b)在第二象限,则点B(b,a)在第_____象限.7、点在第______象限.三、解答题(7小题,每小题10分,共计70分)1、已知点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,求x+y的值.2、将下图中的△ABC作下列变换,画出相应的图形,指出三个顶点的坐标所发生的变化.(1)沿y轴负方向平移1个单位;(2)关于x轴对称;(3)以C点为位似中心,放大到1.5倍.3、【问题解决】(1)已知△ABC中,AB=AC,D,A,E三点都在直线l上,且有∠BDA=∠AEC=∠BAC.如图①,当∠BAC=90°时,线段DE,BD,CE的数量关系为:______________;【类比探究】(2)如图②,在(1)的条件下,当0°<∠BAC<180°时,线段DE,BD,CE的数量关系是否变化,若不变,请证明:若变化,写出它们的关系式;【拓展应用】(3)如图③,AC=BC,∠ACB=90°,点C的坐标为(-2,0),点B的坐标为(1,2),请求出点A的坐标.4、如图,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位,再向下平移5个单位,画出平移得到的线段A2C2,并以它为一边作一个格点△A2B2C2,使A2B2=C2B2.5、已知A(3,1),B(8,5),若用(3,1)→(3,3)→(5,3)→(5,4)→(8,4)→(8,5)表示由A到B的一种走法,并规定从A到B只能向上或向右走,请用上述表示法写出另两种走法,并判断这几种走法的路程是否相等.6、已知点和点两点,且直线与坐标轴围成的三角形的面积等于10,求a的值.7、已知点A(﹣1,3a﹣1)与点B(2b+1,﹣2)关于x轴对称,点C(a+2,b)与点D关于原点对称.(1)求点A、B、C、D的坐标;(2)顺次联结点A、D、B、C,求所得图形的面积.-参考答案-一、单选题1、B【解析】【分析】根据“关于x轴对称的点,横坐标相同,纵坐标互为相反数”解答即可.【详解】解:点关于轴对称的点的坐标为:故选:B.【考点】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律.2、B【解析】【分析】分别求出各个图形的对称轴的条数,再进行比较即可.【详解】解:因为等边三角形有3条对称轴;圆有无数条对称轴;长方形有2条对称轴;正方形有4条对称轴;经比较知,圆的对称轴最多.故选:B.【考点】此题考查了轴对称图形对称轴条数的问题,解题的关键是掌握轴对称图形对称轴的定义以及性质.3、D【解析】【分析】四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).【详解】解:∵点A的横坐标为正数、纵坐标为负数,∴点A(5,-4)在第四象限,故选D.【考点】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键.4、D【解析】【分析】点P在y轴上则该点横坐标为0,据此解答即可.【详解】∵y轴负半轴上的点P到x轴的距离为2,∴点P的坐标为(0,﹣2).故选:D.【考点】本题考查了点的坐标,解决本题的关键是掌握好坐标轴上的点的坐标的特征,y轴上的点的横坐标为0.5、B【解析】【分析】过点作轴于点,则点到轴的距离为,通过证明得到,利用点,的坐标可求,的长,则结论可求.【详解】解:过点作轴于点,如图,则点到轴的距离为.点的坐标为,点的坐标为,,.轴,..四边形是正方形,,...在和中,,...点到轴的距离是5.故选:B.【考点】本题主要考查了图形的坐标与性质,正方形的性质,三角形全等的判定与性质,利用点的坐标表示出相应线段的长度是解题的关键.6、C【解析】【分析】根据直角坐标系中各象限点坐标的特征、坐标轴上点的坐标特征逐项进行分析即可.【详解】A.点在第一象限,故A.错误;B.点在x轴的负半轴,故B.错误;C.点在第二象限,故C.正确;D.点在第三象限,故D.错误,故选:C.【考点】本题考查直角坐标系中各象限点坐标的特征、坐标轴上点坐标的特征,是常见基础考点,难度较易,掌握相关知识是解题关键.7、A【解析】【分析】首先得出第四象限点的坐标性质,进而得出Q点的位置.【详解】解:∵点P(a,b)在第四象限,∴a>0,b<0,∴-b>0,∴点Q(-b,a)在第一象限.故选:A.【考点】此题主要考查了点的坐标,正确把握各象限点的坐标特点是解题关键.8、D【解析】【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点A(a−2,3)和点B(−1,b+5)关于x轴对称,得a−2=-1,b+5=-3.解得a=1,b=−8.则点C(a,b)在第四象限,故选:D.【考点】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a−2=-1,b+5=-3是解题关键.二、填空题1、(﹣4,3)或(﹣4,2)【解析】【分析】分△ABD≌△ABC,△ABD≌△BAC两种情况,根据全等三角形对应边相等即可解答.【详解】解:当△ABD≌△ABC时,△ABD和△ABC关于y轴对称,如下图所示:∴点D的坐标是(-4,3),当△ABD’≌△BAC时,过D’作D’G⊥AB,过C点作CH⊥AB,如上图所示:△ABD’边AB上的高D’G与△BAC的边AB上高CH相等,∴D’G=CH=4,AG=BH=1,∴OG=2,∴点D’的坐标是(-4,2),故答案为:(-4,3)或(-4,2).【考点】本题考查的是全等三角形的性质,坐标与图形的性质,掌握全等三角形的对应边相等是解题的关键.2、【解析】【分析】把点向右平移5个单位,纵坐标不变,横坐标增加5,据此解题.【详解】解:把点向右平移5个单位得到点,则点的坐标为,即,故答案为:.【考点】本题考查平面直角坐标系与点的坐标,涉及平移等知识,是基础考点,难度较易,掌握相关知识是解题关键.3、二【解析】【分析】根据点P(m+1,m)在第四象限,可得到,从而得到,即可求解.【详解】解:∵点P(m+1,m)在第四象限,∴,解得:,∴,∴点Q(﹣3,m+2)在第二象限.故答案为:二【考点】本题主要考查了平面直角坐标系中各个象限的点的坐标的符号特点,熟练掌握四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-)是解题的关键.4、二【解析】【分析】根据各象限内点的坐标特征解答即可.【详解】解:∵x2≥0,∴−x2≤0,∴−x2−1≤﹣1,∴点P(−x2−1,2)在第二象限.故答案为:二.【考点】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).5、(2,6)【解析】【分析】此题涉及的知识点是平面直角坐标系图像性质的综合应用.过点M作MF⊥CD于F,过C作CE⊥OA于E,在Rt△CMF中,根据勾股定理即可求得MF与EM,进而就可求得OE,CE的长,从而求得C的坐标.【详解】∵四边形OCDB是平行四边形,点B的坐标为(16,0),CD∥OA,CD=OB=16,过点M作MF⊥CD于F,则过C作CE⊥OA于E,∵A(20,0),∴OA=20,OM=10,∴OE=OM−ME=OM−CF=10−8=2,连接MC,∴在Rt△CMF中,∴点C的坐标为(2,6).故答案为(2,6).【考点】此题重点考察学生对坐标与图形性质的实际应用,勾股定理,注意数形结合思想在解题的关键.6、四【解析】【分析】根据第二象限内点的横坐标是负数,纵坐标是正数判断出a、b的正负情况,再根据各象限内点的坐标特征解答.【详解】∵点在第二象限,∴,,∴点B(b,a)在第四象限.故答案是:四.【考点】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).7、二【解析】【分析】根据平面直角坐标系中,各象限内的点坐标的符号规律即可得.【详解】解:因为点的横坐标为,纵坐标为,所以点在第二象限,故答案为:二.【考点】本题考查了点所在的象限,熟练掌握各象限内的点坐标的符号规律是解题关键.三、解答题1、1【解析】【分析】根据关于原点对称的点的坐标特点,列出方程即可求得x、y值,据此即可解答.【详解】解:∵点P(2x,y2+4)与Q(x2+1,﹣4y)关于原点对称,∴x2+1+2x=0,y2+4﹣4y=0,∴(x+1)2=0,(y﹣2)2=0,解得:x=﹣1,y=2,∴x+y=-1+2=1.【考点】本题考查了关于原点对称的点的坐标的特点,代数式求值问题,熟练掌握和运用关于原点对称的点的坐标特点是解决本题的关键.2、(1)见解析;(2)见解析;(3)见解析.【解析】【分析】(1)沿y轴负方向平移1个单位,即将整个图象向下平移1个单位;(2)关于x轴对称:图象上的每个点,横坐标不变,纵坐标变为原数的相反数;(3)以C点为位似中心,在第二象限或第四象限放大到1.5倍.【详解】解:变换后的图形如下图所示.(1)将△ABC沿y轴负方向平移1个单位后得到△A1B1C1,A1(-5,-1),B1(0,2),C1(0,-1).即横坐标不变,纵坐标减小.(2)将△ABC关于x轴对称后,得△A2B2C2,A2(-5,0),B2(0,-3),C2(0,0).即横坐标不变,纵坐标变为原来的相反数.(3)将△ABC以C点为位似中心,放大到1.5倍得△A3B3C3(有2个三角形),显然,A3(-5×1.5,0),B3(0,3×1.5),C3(0,0),即A3(-7.5,0),B3(0,4.5),C3(0,0),或A3(7.5,0)、B3(0,-4.5)、C3(0,0).【考点】本题考查作图—平移、轴对称、位似等变换,是重要考点,掌握相关知识是解题关键.3、(1)DE=BD+CE;(2)DE=BD+CE的数量关系不变,理由见解析;(3)(﹣4,3)【解析】【分析】(1)证明△ABD≌△CAE,根据全等三角形的性质得到AD=CE,BD=AE,结合图形证明结论;(2)根据三角形的外角性质得到∠ABD=∠CAE,证明△ABD≌△CAE,根据全等三角形的性质解答;(3)过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,根据(1)的结论得到△ACM≌△BCN,根据全等三角形的性质解答即可.【详解】解:(1)∵∠BAC=90°,∴∠BDA=∠AEC=∠BAC=90°,∴∠ABD+∠BAD=90°,∠CAE+∠BAD=90°,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE,故答案为:DE=BD+CE;(2)DE=BD+CE的数量关系不变,理由如下:∵∠BAE是△ABD的一个外角,∴∠BAE=∠ADB+∠ABD,∵∠BDA=∠BAC,∴∠ABD=∠CAE,在△ABD和△CAE中,,∴△ABD≌△CAE(AAS),∴AD=CE,BD=AE,∴DE=AD+AE=BD+CE;(3)过点A作AM⊥x轴于点M,过点B作BN⊥x轴于点N,∵点C的坐标为(﹣2,0),点B的坐标为(1,2),∴OC=2,ON=1,BN=2,∴CN=3,由(1)可知,△ACM≌△CBN,∴AM=CN=3,CM=BN=2,∴OM=OC+CM=4,∴点A的坐标为(﹣4,3).【考点】本题考查的是三角形全等的判定和性质、坐标与图形性质,掌握全等三角形的判定定理和性质定理是解题的关键.4、(1)见解析;(2)见解析【解析】【分析】(1)根据轴对称作图作出即可;(2)根据平移的性质作出A2C2,在作出△A2B2C2,使A2C2=C2B2(答案不唯一).【详解】解:(1)△A1B1C1如图所示;(2)线段A2C2和△A2B2C2如图所示(符合条件的△A2B2C2不唯一).【考点】本题考查了轴对称作图,平移的性质,解题的关键是掌握平移不改变图形的形状和大小.5、走法一:(3,1)→(6,1)→(6,2)→(7,2)→(8,2)→(8,5);走法二:(3,1)→(3,2)→(3,5)→(4,5)→(7,5)→(8,5).(答案不唯一).这几种走法的路程相等.【解析】【分析】根据题意,走法有多种,只要符合只能向上或向右走即可,通过走的路径可判断这些走法的路程相

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论