




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省赤水市七年级上册基本平面图形综合测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,在直线l上有A,B,C三点,则图中线段共有(
)A.4条 B.3条 C.2条 D.1条2、要在一条直线上得到10条不同的线段,至少要在这条直线上选用(
)个不同的点.A.20 B.10 C.7 D.53、如图,在数轴上,若点表示的数分别是-2和10,点M到距离相等,则M表示的数为()A.10 B.8 C.6 D.44、下列各角中,是钝角的是(
).A.周角 B.平角 C.平角 D.平角5、开学整理教室时,卫生委员总是先把每一列最前和最后的课桌摆好,然后再依次摆中间的课桌,一会儿一列课桌就摆在一条线上,整整齐齐,用几何知识解释其道理正确的是(
)A.两点确定一条直线 B.两点之间,线段最短C.垂线段最短 D.在同一平面内,过一点有且只有一条直线与已知直线垂直6、下列说法中正确的有(
).(1)线段有两个端点,直线有一个端点;(2)由两条射线组成的图形叫角(3)角的大小与我们画出的角的两边的长短无关;(4)线段上有无数个点;(5)两个锐角的和必定是直角或钝角;(6)若与有公共顶点,且的一边落在的内部,则.A.1个 B.2个 C.3个 D.4个7、点C是线段AB的中点,点D是线段AC的三等分点.若线段,则线段BD的长为()A.10cm B.8cm C.8cm或10cm D.2cm或4cm8、把10°36″用度表示为()A.10.6° B.10.001° C.10.01° D.10.1°9、正多边形通过镶嵌能够密铺成一个无缝隙的平面,下列组合中不能镶嵌成一个平面的是()A.正三角形和正方形 B.正三角形和正六边形C.正方形和正六边形 D.正方形和正八边形10、下面等式成立的是(
)A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、数轴上的点P对应的数是,将点P向右移动8个长度单位得到点Q,则线段的中点在数轴上对应的数是____________.2、如图,将一副三角板叠放一起,使直角的顶点重合于点O,则∠AOD+∠COB的度数为___________度.3、如图,以图中的A,B,C,D,E为端点的线段共有__________条.4、时钟的分针分钟转动的角度为________度.5、一艘货船沿着北偏西方向航行,为避免触礁,左拐后的航线是_______.6、如图,从甲地到乙地有四条道路,其中最短的路线是____,最长的路线是_____7、如图,D、E分别为AB、BC的中点,若,,则_____.8、如图,点C为线段AB上一点,AC:CB=3:2,D、E两点分别AC、AB的中点,若线段DE=2cm,则AB=_____cm.9、如图,将两块直角三角板的直角顶点重合为如图所示的形状,若,则________.10、把边长为1的正方形纸片分割成如图的四块,其中点分别为的中点,四边形是菱形,用这四块纸片拼成四边形(要求这四块纸片不重叠无缝隙),则四边形的周长是________.三、解答题(6小题,每小题10分,共计60分)1、如图,点A在线段CB上,,点D是线段BC的中点.若,求线段AD的长.2、(1)已知线段、,请作出线段,使.(2)如图,已知线段,请用尺规按下列要求作图:①延长线段到,使;②延长线段到,使如果,那么________,________,________.3、已知:如图,AB=18cm,点M是线段AB的中点,点C把线段MB分成MC:CB=2:1的两部分,求线段AC的长.请补充完成下列解答:解:∵M是线段AB的中点,AB=18cm,∴AM=MB=AB=cm.∵MC:CB=2:1,∴MC=MB=cm.∴AC=AM+=+=cm.4、已知:如图,点在线段上,点是中点,.(1)求线段在长;(2)是线段上一点,且,请在图中画出点,并直接写出长度是线段长度2倍的线段.5、(1)如图,∠AOB=90°,∠BOC=30°,C在∠AOB外部,OM平分∠AOC,ON平分∠BOC,则∠MON=度.(2)若∠AOB=α,其他条件不变,则∠MON=度.(3)若∠BOC=β(β为锐角),其他条件不变,则∠MON=度.(4)若∠AOB=α且∠BOC=β(β为锐角),且点A在OB的上方,求∠MON的度数.(请在图2中画出示意图并解答)6、如图,已知平面上有四个村庄,用四个点,,,表示.(1)连接,作射线,作直线与射线交于点;(2)若要建一供电所,向四个村庄供电,要使所用电线最短,则供电所应建在何处?请画出点的位置并说明理由.-参考答案-一、单选题1、B【解析】【详解】线段有:AB、AC、BC.故选:B.2、D【解析】【分析】分别选用5或7或10或20个点时,得到线段的数量即可判断.【详解】解:当这条直线上选用5个不同的点时,如图:线段有:AB、AC、AD、AE、BC、BD、BE、CD、CE、DE共有10条线段,则在这条直线上应选5个不同点,可得到10条不同的线段,故选:D.【考点】本题考查的是线段的条数的确定,正确的识别图形是解题的关键.3、D【解析】【分析】根据两点之间的距离求出AB的长度,根据点M到A、B距离相等,求出BM的长度,从而得到点M表示的数.【详解】解:AB=10-(-2)=10+2=12,∵点M到A、B距离相等,即M是线段AB的中点,∴BM=AB=×12=6,∴点M表示的数为10-6=4,故选:D.【考点】本题考查了两点之间的距离,数轴,有理数的减法,线段的中点,根据两点之间的距离求出AB的长度是解题的关键.4、B【解析】【分析】直接利用角的定义逐项分析即可得出答案.【详解】解:A.周角=,不是钝角,不合题意;B.平角=,是钝角,符合题意;C.平角=180°,不是钝角,不合题意;D.平角=,不是钝角,不合题意.故选:B【考点】此题主要考查了角的概念,正确掌握平角、周角、钝角的概念是解题关键.5、A【解析】【分析】根据两点确定一条直线解答.【详解】解:用到的几何知识是:两点确定一条直线.故选:A.【考点】此题考查两点确定一条直线的实际应用,正确理解题意是解题的关键.6、C【解析】【分析】线段有两个端点,直线没有端点,由两条有公共端点的射线组成的图形叫角,角的大小与角两边的长短无关,根据线段、直线、角的定义等知识逐一进行判断.【详解】解:(1)线段有两个端点,直线没有端点,故(1)错误;(2)由两条有公共端点的射线组成的图形叫角,这两条射线叫做角的边,它们的公共端点叫做角的顶点,故(2)错误;(3)角的大小与我们画出的角的两边的长短无关,故(3)正确;(4)线段上有无数个点,故(4)正确;(5)两个锐角的和可能是锐角,故(5)错误;(6)若与有公共顶点,且的一边落在的内部,则,故(6)正确,即正确的序号为(3)(4)(6),共3个,故选:C.【考点】本题考查线段、直线、角的定义等知识,是基础考点,掌握相关知识是解题关键.7、C【解析】【分析】根据题意作图,由线段之间的关系即可求解.【详解】如图,∵点C是线段AB的中点,∴AC=BC=AB=6cm当AD=AC=4cm时,CD=AC-AD=2cm∴BD=BC+CD=6+2=8cm;当AD=AC=2cm时,CD=AC-AD=4cm∴BD=BC+CD=6+4=10cm;故选C.【考点】此题主要考查线段之间的关系,解题的关键是熟知线段的和差关系.8、C【解析】【分析】秒化分除以60,分化度除以60,即秒化度除以3600.【详解】解:36″=36÷3600°=0.01°,所以10°36″=10.01°.故选C.【考点】本题考查了度分秒的换算,分秒化为度时用除法,而度化为分秒时用乘法.9、C【解析】【分析】由正多边形的内角拼成一个周角进行判断,ax+by=360°(a、b表示多边形的一个内角度数,x、y表示多边形的个数).【详解】解:A、∵正三角形和正方形的内角分别为60°、90°,3×60°+2×90°=360°,∴正三角形和正方形可以镶嵌成一个平面,故A选项不符合题意;B、∵正三角形和正六边形的内角分别为60°、120°,2×60°+2×120°=360°,或4×60°+1×120°=360°,∴正三角形和正六边形可以镶嵌成一个平面,故B选项不符合题意;C、∵正方形和正六边形的内角分别为90°、120°,2×90°+1×120°=300°<360°且3×90°+1×120°=390°>360°,∴正方形和正六边形不能镶嵌成一个平面,故C选项符合题意;D、正方形和正八边形的内角分别为90°、135°,1×90°+2×135°=360°,∴正方形和正八边形可以镶嵌成一个平面,故D选项不符合题意;故选:C.【考点】本题主要考查了平面镶嵌,两种或两种以上几何图形向前成平面的关键是:围绕一点拼在一起的多边形的内角加在一起恰好组成一个周角.10、D【解析】【分析】根据角度的运算法则,以及角的换算,即可得到答案.【详解】解:A、,故A错误;B、,故B错误;C、,故C错误;D、故D正确;故选:D.【考点】本题考查了角度的加减运算,以及角的单位换算,解题的关键是掌握角度的运算法则和角度的60进位制.二、填空题1、3【解析】【分析】利用数轴得到点Q表示的数,再根据线段中点定义可得答案.【详解】解:∵点P对应的数是-1,将点P向右移动8个长度单位得到点Q,∴点Q表示的数为:-1+8=7,∴线段PQ的中点对应的数是故答案为:3.【考点】本题考查了数轴,掌握数轴上两点间的距离是解决此题的关键.2、180【解析】【分析】根据角度的关系∠AOD+∠COB=∠COD+∠AOB,据此即可求解.【详解】∠AOD+∠COB=∠COD+∠AOC+∠COB=∠COD+∠AOB=90°+90°=180°.故答案是:180.【考点】本题考查了三角板中角度的计算,正确把∠AOD+∠COB转化成∠COD+∠AOB是解决本题的关键.3、10【解析】【分析】根据两个点之间可以组成一条线段进行求解即可.【详解】解:如图所示:线段有:AC、AD、AE、AB、CD、CE、CB、DE、DB、EB一共10条,故答案为:10.【考点】本题主要考查了线段的定义,解题的关键在于能够熟练掌握相关定义.4、30【解析】【分析】根据钟面的特点把钟面平均分成12份,每份是30°,分针转动5分钟,正好是一份,可得答案.【详解】解:分针5分钟转动的角度为30°×1=30°,故答案为:30.【考点】本题考查了钟面角,掌握“钟面平均分成12份,每份是30°”是解本题的关键.5、正西方向【解析】【分析】根据方向角的概念,左拐28°,相当于向北又偏了28°,可得结果.【详解】解:北偏西方向左拐后,62+28=90,即北偏西90°,即正西方向,故答案为:正西方向.【考点】本题考查了方位角,解题的关键是掌握方位角的定义.6、
从甲经A到乙
从甲经D到乙【解析】【详解】试题分析:根据两点之间线段最短可得:从甲经A到乙的距离最短;根据三角形的三边关系可得:从甲经D到乙的距离最长.7、【解析】【分析】根据中点的概念可分别求得DB、BE的长,由线段的和即可求得DE的长.【详解】∵D、E分别为AB、BC的中点∴,∴DE=DB+BE=故答案为:【考点】本题考查了中点的概念,线段的和,理解题意江掌握这些知识是关键.8、10【解析】【分析】设AB=x,根据比值可求出AC、BC的长,再根据线段中点的性质可求出AD、AE,然后根据线段的和差列出关于x的方程并求解即可.【详解】解:设AB=x,由已知得:AC=x,BC=x,∵D、E两点分别为AC、AB的中点,∴DC=x,BE=x,∵DE=DC﹣EC=DC﹣(BE﹣BC),∴x﹣(x﹣x)=2,解得:x=10,∴AB的长为10cm.故填10.【考点】本题考查两点间的距离、线段中点定义以及比例的知识,根据线段的和差列出方程是解答本题的关键.9、43【解析】【分析】由题意可得∠AOB=∠COD=90°,则可得∠AOD+∠BOC=180°,即可求得结果.【详解】解:∵∠AOB=∠COD=90°∴∠AOC+∠BOC+∠BOD+∠BOC=180°即∠AOD+∠BOC=180°∵∠AOD=137°∴∠BOC=43°,故答案为:43.【考点】本题主要考查角的和差关系,根据角的和差关系,列出算式,是解题的关键.10、或或4【解析】【分析】先根据题意画出图形,再根据周长的定义即可求解.【详解】解:根据题意,如图:∵PQ=MN=1,,∴四边形MNPQ的周长为:;如图:∵OP=MN=,OQ=QM=1,,∴四边形MNPQ的周长为:;如图:∵,∴四边形MNPQ的周长为:;故答案为:或或4.【考点】考查了平面镶嵌(密铺),关键是得到与此正方形不全等的四边形MNPQ(要求这四块纸片不重叠无缝隙)的各种情况.三、解答题1、1【解析】【分析】根据点A在线段CB上,AC=AB,点D是线段BC的中点,CD=3,可以求得BC的长,从而可以求得CA的长,从而得到AD的长.【详解】∵点D是线段BC的中点,CD=3,∴BC=2CD=6,∵AC=AB,AC+AB=CB,∴AC=2,AB=4,∴AD=CD﹣AC=3﹣2=1,【考点】本题考查线段的和差计算,解题的关键是准确识图求出各线段的长.2、(1)作图见解析(2)①作图见解析;②作图见解析;4,2,8.【解析】【分析】(1)根据题意作射线,在射线上依次截取,在线段上截取,则,即为所求;(2)根据题意以B为圆心,以AB为半径截取BC;以A为圆心,以AC的长为半径截取AD.根据线段中点的性质,可得BC的长,根据线段的和差,可得AC的长,再根据线段中点的性质,可得CD的长.【详解】(1)如图,根据题意作射线,在射线上依次截取,在线段上截取,则,即为所求;(2)①如图:以B为圆心,以AB为半径截取BC;②如图,以A为圆心,以AC的长为半径截取AD.由线段中点的性质,得BC=AB=2cm;由线段的和差,得AC=AB+BC=2+2=4cm.由线段中点的性质,得CD=AC+AD=2AC=2×4=8cm.故答案为:4,2,8.【考点】本题考查了两点间的距离,尺规作图作线段等于已知线段,掌握线段的和差,线段中点的性质是解题关键.3、,9,,6,MC,9,6,15【解析】【分析】根据中点的定义和线段和差填空即可.【详解】解:∵M是线段AB的中点,且AB=18cm,∴AM=MB=AB=9cm.∵MC:CB=2:1,∴MC=MB=6cm.∵AC=AM+MC=9+6=15cm,故答案为:,9,,6,MC,9,6,15.【考点】本题考查了线段的中点和线段的和差,解题关键是准确识图,弄清线段之间的数量关系.4、(1);(2)画图见解析;.【解析】【分析】(1)求出AD、AC的长,然后根据CD=AD-AC求解即可;(2)求出线段DE、CE、EB的长度即可求解.【详解】解:(1),点是中点,,,;(2)如图,∵,∴=2,∴CE=2+2=4,∴CE=2DE.∵AC=4,∴AC=2DE.,AC=4,CE=4,∴EB=12-4-4=4,∴EB=2DE.∴长度是线段长度2倍的线段有:.【考点】本题考查了线段的和差,两点间的距离,以及线段的中点,正确识图是解答本题的关键.5、(1);(2);(3);(4),见解析【解析】【分析】(1)先根据已知条件求出∠AOC的度数,再根据角平分线的性质即可得出∠MOC、∠NOC的度数,由∠MON=∠MOC﹣∠NOC即可得出结论;(2)、(3)、(4)同理(1)可得到答案.【详解】解:(1)∵∠AOB=90°,∠BOC=30°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°,又∵OM为∠AOC平分线,ON为∠BOC平分线,∴∠MOC=∠AO
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 浙江省淳安县2025年上半年事业单位公开遴选试题含答案分析
- 河北省盐山县2025年上半年公开招聘城市协管员试题含答案分析
- 河北省行唐县2025年上半年公开招聘城市协管员试题含答案分析
- 2025年度带担保人财产抵押的旅游消费贷款合同
- 2025版土方施工机械租赁及施工期噪音控制服务协议
- 2025版建筑垃圾处理施工劳务合同范本
- 2025版企业培训项目风险管理合同协议范本
- 2025房地产总经理任期责任书及工作考核与激励措施协议
- 2025版文化产业入股合作协议书
- 河北省沧县2025年上半年公开招聘城市协管员试题含答案分析
- 园林植物栽培与养护PPT完整全套教学课件
- 12K101-1 轴流通风机安装
- 新药发现与开发第一章概论
- 思想道德与法治2021版第一章教案
- 山西省煤矿建设施工管理标准
- YY/T 1792-2021荧光免疫层析分析仪
- 实验动物遗传学及质量控制课件
- 认识电影走进电影课件
- 服务器虚拟化资源调研表
- 2022年杭州市中小学教师职称考试卷
- 《中国公民科学素质基准》题库500题(精品)
评论
0/150
提交评论