难点解析-海南省文昌市中考数学真题分类(平行线的证明)汇编专项攻克试题_第1页
难点解析-海南省文昌市中考数学真题分类(平行线的证明)汇编专项攻克试题_第2页
难点解析-海南省文昌市中考数学真题分类(平行线的证明)汇编专项攻克试题_第3页
难点解析-海南省文昌市中考数学真题分类(平行线的证明)汇编专项攻克试题_第4页
难点解析-海南省文昌市中考数学真题分类(平行线的证明)汇编专项攻克试题_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

海南省文昌市中考数学真题分类(平行线的证明)汇编专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、在△ABC中,∠A-∠C=∠B,那么△ABC是()A.等边三角形 B.锐角三角形 C.钝角三角形 D.直角三角形2、给定下列条件,不能判定三角形为直角三角形的是(

)A.∠A:∠B:∠C=1∶2∶3 B.∠A+∠B=∠CC. D.∠A=2∠B=3∠C3、将一副三角板按如图所示的方式放置,,,,且点在上,点在上,AC∥EF,则的度数为(

)A. B. C. D.4、如图,EF与的边BC,AC相交,则与的大小关系为(

).A. B.C. D.大小关系取决于的度数5、如图,,将一副直角三角板作如下摆放,,.下列结论:①;②;③;④.其中正确的个数是(

)A.1 B.2 C.3 D.46、给出下列命题,正确的有(

)个①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③等腰三角形最小边是底边;④等边三角形的高、中线、角平分线都相等;⑤等腰三角形都是锐角三角形A.1个 B.2个 C.3个 D.4个7、如图,∠B+∠C+∠D+∠E―∠A等于()A.180° B.240° C.300° D.360°8、如图,在△ABC中,∠ABC的平分线与△ABC的外角平分线相交于点D,,则∠D的度数是(

)A.44° B.24° C.22° D.20°第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、如图折叠一张矩形纸片,已知∠1=70°,则∠2的度数是__.2、如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=∠EFD=90°,∠ABC=60°,∠DEF=45°,AB∥DE,则∠AFD的大小为___________度.3、如图,点E是AD延长线上一点,如果添加一个条件,使BC∥AD,则可添加的条件为__________.(任意添加一个符合题意的条件即可)4、将两张三角形纸片如图摆放,量得∠1+∠2+∠3+∠4=220°,则∠5=__.5、如图,△ABC≌△A′B′C′,其中∠A=36°,∠C′=24°,则∠B=______度.6、如图,在△ABC中,∠A=52°,∠ABC与∠ACB的角平分线交于点D1,∠ABD1与∠ACD1的角平分线交于点D2,则∠BD2C的度数是_____.7、请写出命题“如果,那么”的逆命题:________.三、解答题(7小题,每小题10分,共计70分)1、完成下列推理过程:已知:如图,∠1+∠2=180°,∠3=∠B求证:∠EDG+∠DGC=180°证明:∵∠1+∠2=180°(已知)∠1+∠DFE=180°()∴∠2=()∴EF∥AB()∴∠3=()又∵∠3=∠B(已知)∴∠B=∠ADE()∴DE∥BC()∴∠EDG+∠DGC=180°()2、如图,在Rt△ABC中,∠ACB=90°,∠A=40°,△ABC的外角∠CBD的平分线BE交AC的延长线于点E.(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.3、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_________度,________度,_________度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.4、如图,直线分别与直线,交于点,.平分,平分,且∥.求证:∥.5、如图,在线段BC上有两点E,F,在线段CB的异侧有两点A,D,且满足,,,连接AF;(1)与相等吗?请说明理由.(2)若,,AF平分时,求的度数.6、如图,AB⊥BC于点B,DC⊥BC于点C,DE平分∠ADC交BC于点E,点F为线段CD延长线上一点,∠BAF=∠EDF(1)求证:∠DAF=∠F;(2)在不添加任何辅助线的情况下,请直接写出所有与∠CED互余的角.7、已知:如图AB⊥BC于B,CD⊥BC于C,∠1=∠2.求证:BE∥CF.证明:∵AB⊥BC,CD⊥BC(已知)∴∠ABC=90°,∠BCD=90°()即∠1+∠3=90°,∠2+∠4=90°又∵∠1=∠2()∴=()∴BE∥CF()-参考答案-一、单选题1、D【解析】【分析】由于∠A-∠C=∠B,再结合∠A+∠B+∠C=180°,易求∠A,进而可判断三角形的形状.【详解】∵∠A-∠C=∠B,∠A+∠B+∠C=180°,∴2∠A=180°,∴∠A=90°,∴△ABC是直角三角形,故选D.【考点】本题考查了三角形内角和定理,求出∠A的度数是解题的关键.2、D【解析】【分析】根据三角形的内角和等于180°求出最大角,然后选择即可.【详解】解:A、最大角∠C=×180°=90°,是直角三角形,不符合题意;B、最大角∠C=180°÷2=90°,是直角三角形,不符合题意;C、设∠A=x,则∠B=2x,∠C=3x,所以,x+2x+3x=180°,解得x=30°,最大角∠C=3×30°=90°,是直角三角形,不符合题意;D、设∠A=x,则∠B=x,∠C=x,所以,,解得,是钝角三角形,符合题意.故选:D.【考点】本题考查了三角形的内角和定理,求出各选项中的最大角是解题的关键.3、C【解析】【分析】根据平行线的性质和三角形的内角和定理即可得到结论.【详解】∵AC∥EF,∴∠DBE=∠C=45°,∴∠FBD=135°,∵∠E=60°,∠EDF=90°,∴∠F=30°,∴∠FDC=∠F+∠FBD=30°+135°=165°,故选:C.【考点】本题考查了三角形的内角和定理,平行线的性质,正确的识别图形是解题的关键.4、C【解析】【分析】根据对顶角相等和三角形的内角和定理即可得结论.【详解】解:∵∠3=∠CEF,∠4=∠CFE∴∠CEF+∠CFE+∠C=∠3+∠4+∠C=180°又∵∠1+∠2+∠C=180°∴故选:C【考点】本题主要考查对顶角的性质和三角形的内角和定理,掌握对顶角的性质和三角形的内角和定理是解题的关键.5、D【解析】【分析】由内错角相等,两直线平行可判断①,由邻补角的定义可判断②,如图,延长交于先求解从而可判断③④,于是可得答案.【详解】解:由题意得:故①符合题意;故②符合题意;如图,延长交于故③④符合题意;综上:符合题意的有①②③④故选D【考点】本题考查的是三角形的内角和定理的应用,平行线的判定与性质,三角形外角的性质,等腰直角三角形的两个锐角都为,掌握以上基础知识是解本题的关键.6、B【解析】【详解】解:①等腰三角形的顶角角平分线、底边上的中线和底边上的高重合,故本选项错误;②等腰三角形两腰上的高相等,本选项正确;③等腰三角形最小边不一定底边,故本选项错误;④等边三角形的高、中线、角平分线都相等,本选项正确;⑤等腰三角形可以是钝角三角形,故本选项错误,故选B7、A【解析】【分析】根据三角形的外角的性质,得∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,两式相加再减去∠A,根据三角形的内角和是180°可求解.【详解】∵∠B+∠C=∠CGE=180°-∠AGF,∠D+∠E=∠DFG=180°-∠AFG,∴∠B+∠C+∠D+∠E-∠A=360°-(∠AGF+∠AFG+∠A),又∵∠AGF+∠AFG+∠A=180°,∴∠B+∠C+∠D+∠E-∠A=180°,故选A.【考点】本题考查了三角形外角的性质、三角形内角和定理,熟练掌握三角形外角的性质以及三角形内角和等于180度是解题的关键.8、C【解析】【分析】根据角平分线定义可得∠CBD=∠ABC,根据三角形外角性质表示出∠DCE,然后整理即可得到∠D=∠A,从而求出度数.【详解】解:∵BD平分∠ABC,∴∠CBD=∠ABC,∵CD是△ABC的外角平分线,∴∠DCE=∠ACE,∵∠DCE=∠CBD+∠D=∠ABC+∠D,∠ACE=∠A+∠ABC,∴∠ABC+∠D=(∠ABC+∠A).∴∠D=∠A=22°.故选:C.【考点】此题考查了角平分线的计算,三角形外角的性质,熟记三角形外角性质是解题的关键.二、填空题1、55°【解析】【详解】,,.2、15【解析】【分析】根据直角三角板的特点,结合题意,通过角的转换即可得结果;【详解】解:如图,∵∠ACB=∠EFD=90°,∠ABC=60°,∴∠A=30°,∵∠DEF=45°,AB∥DE,∴∠BGF=45°,∵∠A+∠AFD=∠BGF=45°,∴∠AFD=∠BGF-∠A=45°-30°=15°.故答案为:15.【考点】本题主要考查角的转换、三角形的内角和定理、平行线的性质,掌握三角形的内角和定理、平行线的性质是解题的关键.3、∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE【解析】【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断(答案不唯一).【详解】解:若,则BC∥AD;若∠C+∠ADC=180°,则BC∥AD;若∠CBD=∠ADB,则BC∥AD;若∠C=∠CDE,则BC∥AD;故答案为∠A+∠ABC=180°或∠C+∠ADC=180°或∠CBD=∠ADB或∠C=∠CDE.(答案不唯一)【考点】本题主要考查了平行线的判定,同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.4、40°【解析】【分析】直接利用三角形内角和定理得出∠6+∠7的度数,进而得出答案.【详解】如图所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,∵∠1+∠2+∠3+∠4=220°,∴∠1+∠2+∠6+∠3+∠4+∠7=360°,∴∠6+∠7=140°,∴∠5=180°-(∠6+∠7)=40°.故答案为40°.【考点】主要考查了三角形内角和定理,正确应用三角形内角和定理是解题关键.5、120【解析】【分析】根基三角形全等的性质得到∠C=∠C′=24°,再根据三角形的内角和定理求出答案.【详解】∵,∴∠C=∠C′=24°,∵∠A+∠B+∠C=180°,∠A=36°,∴∠B=120°,故答案为:120.【考点】此题考查三角形全等的性质定理:全等三角形的对应角相等,三角形的内角和定理.6、84°##84度【解析】【分析】利用角平分线的定义∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,求出∠CBD2=,,再根据三角形的内角和定理以及,再把∠A代入即可求∠BD2C的度数.【详解】解:∵BD1、CD1分别平分∠ABC和∠ACB,∴∠D1BA=∠D1BC=∠ABC,∠D1CA=∠D1CB=∠ACB,∵BD2、CD2分别平分∠ABD1和∠ACD1,∴∠ABD2=∠ABD1=,∠ACD2=∠ACD1=,∴∠CBD2=,∴,∴∠BD2C=180°-(∠D2BC+∠D2CB)=180°-(∠ABC+∠ABC),当∠A=52°时,∠BD2C=180°-×(180°-52°),=84°.故答案为84°.【考点】此题考查三角形内角和定理,解题关键在于利用角平分线的定义进行有关计算.7、如果,那么【解析】【分析】根据逆命题的概念解答即可.【详解】解:命题“如果,那么”的逆命题是“如果,那么”,故答案为:如果,那么.【考点】此题考查了互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题.其中一个命题称为另一个命题的逆命题.三、解答题1、邻补角定义;∠DFE,同角的补角相等;内错角相等,两直线平行;∠ADE,两直线平行,内错角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补【解析】【分析】依据∠1+∠2=180°,∠1+∠DFE=180°,即可得到∠2=∠DFE,由内错角相等,两直线平行证明EF∥AB,则∠3=∠ADE,再根据∠3=∠B,由同位角相等,两直线平行证明DE∥BC,故可根据两直线平行,同旁内角互补,即可得出结论.【详解】∵∠1+∠2=180°(已知)∠1+∠DFE=180°(邻补角定义)∴∠2=∠DFE(同角的补角相等)∴EF∥AB(内错角相等,两直线平行)∴∠3=∠ADE(两直线平行,内错角相等)又∵∠3=∠B(已知)∴∠B=∠ADE(等量代换)∴DE∥BC(同位角相等,两直线平行)∴∠EDG+∠DGC=180°(两直线平行,同旁内角互补)【考点】本题考查了平行线的性质和判定.正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.2、(1)65°;(2)25°.【解析】【分析】(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=∠CBD=65°;(2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.【详解】(1)∵在Rt△ABC中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE是∠CBD的平分线,∴∠CBE=∠CBD=65°;(2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF∥BE,∴∠F=∠CEB=25°.【考点】本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.3、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;

(2)猜想:∠ABP+∠ACP=90°-∠A;

证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.

(3)判断:(2)中的结论不成立.

证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【考点】此题主要考查利用三角形内角和定理进行等角转换,熟练掌握,即可解题.4、证明见解析.【解析】【分析】先根据角平分线的定义可得,再根据平行线的性质可得,从而可得,然后根据平行线的判定即可得证.【详解】平分,平分,即.【考点】本题考查了平行线的判定与性质、角平分线的定义等知识点,熟记平行线的判定与性质是解题关键.5、(1),理由见解析(2)【解析】【分析】(1)由“SSS”可证△AEB≌△DFC,可得结论;(2)由全等三角形的性质可得∠AEB=∠DFC=20°,可

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论