




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
冀教版8年级下册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图所示,直线分别与轴、轴交于点、,以线段为边,在第二象限内作等腰直角,,则过、两点直线的解析式为()A. B. C. D.2、下列说法正确的是()A.只有正多边形的外角和为360°B.任意两边对应相等的两个直角三角形全等C.等腰三角形有两条对称轴D.如果两个三角形一模一样,那么它们形成了轴对称图形3、如图,在Rt△ABO中,∠OBA=90°,A(4,4),且,点D为OB的中点,点P为边OA上的动点,使四边形PDBC周长最小的点P的坐标为()A.(2,2) B.(,) C.(,) D.(,)4、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当和的面积相等时,y的值为()A. B. C. D.5、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为()A. B.C. D.6、十边形中过其中一个顶点有()条对角线.A.7 B.8 C.9 D.107、点A(-1,y1),B(3,y2)是一次函数y=(m2+1)x-1图像上的两点,则y1与y2的大小关系为()A.y1<y2 B.y1=y2 C.y1>y2 D.无法判断第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、一次函数y=﹣2x+7的图象不经过第_____象限.2、如图,正方形ABCD中,E是BC边上的一点,连接AE,将AB边沿AE折叠到AF.延长EF交DC于G,点G恰为CD边中点,连接AG,CF,AC.若AB=6,则△AFC的面积为_______.3、如图,四边形ABFE、AJKC、BCIH分别是以Rt△ABC的三边为一边的正方形,过点C作AB的垂线,交AB于点D,交FE于点G,连接HA、CF.欧几里得编纂的《原本》中收录了用该图形证明勾股定理的方法.关于该图形的下面四个结论:①△ABH≌△FBC;②正方形BCIH的面积=2△ABH的面积;③矩形BFGD的面积=2△ABH的面积;④BD2+AD2+CD2=BF2.正确的有
______.(填序号)4、如图,AC是正五边形ABCDE的对角线,则为______度.5、若点是直线上一点,则m=______.6、如图,在矩形ABCD中,AB=6,BC=8.如果𝐸、F分别是AD、BC上的点,且EF经过AC中点O,G,H是对角线AC上的点.下列判断正确的有______.①在AC上存在无数组G、H,使得四边形EGFH是平行四边形;②在AC上存在无数组G、H,使得四边形EGFH是矩形;③在AC上存在无数组G、H,使得四边形EGFH是菱形;④当AG=时,存在E、F、G,H,使得四边形EGFH是正方形.7、如图,矩形纸片,,.如果点在边上,将纸片沿折叠,使点落在点处,如果直线经过点,那么线段的长是_______.8、已知直线y=kx+b(k≠0)的图像与直线y=-2x平行,且经过点(2,3),则该直线的函数表达式为______________________.三、解答题(7小题,每小题10分,共计70分)1、平面直角坐标系内有一平行四边形点,,,,有一次函数的图象过点(1)若此一次函数图象经过平行四边形边的中点,求的值(2)若此一次函数图象与平行四边形始终有两个交点,求出的取值范围2、在平面直角坐标系xOy中,点A(a,c)和点B(b,d).给出如下定义:以AB为边,作正方形ABCD,按照逆时针方向排列A、B、C、D四个顶点,该正方形上的点到直线距离的最大值定义为:逆序正方形到直线的最大距离.如图1,直线经过(0,3)且垂直于y轴,点A(﹣2,2),点B(﹣2,﹣1),可求得点C(1,﹣1),D(1,2),且逆序正方形ABCD到直线的最大距离为4.(1)若点A(1,0),点B(3,﹣2),则点C的坐标为,点D的坐标为,逆序正方形ABCD到直线y=﹣x的最大距离为.(2)如图2,若点A(0,4),点B(3,0),求逆序正方形ABCD到直线y=x+2的最大距离.(3)如果点A(a,1),B(a,﹣1),若存在逆序正方形ABCD到直线y=x的最大距离大于2,直接写出a的取值范围.3、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.(1)若,请写出与的函数关系式.(2)若,请写出与的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?4、为了提升学生的交通安全意识,学校计划开展全员“交通法规”知识竞赛,七(3)班班主任赵老师给全班同学定下的目标是:合格率达90%,优秀率达25%(x<60为不合格;x≥60为合格;x≥90为优秀),为了解班上学生对“交通法规”知识的认知情况,赵老师组织了一次模拟测试,将全班同学的测试成绩整理后作出如下频数分布直方图.(图中的70~80表示,其余类推)(1)七(3)班共有多少名学生?(2)赵老师对本次模拟测试结果不满意,请通过计算给出一条她不满意的理由;(3)模拟测试后,通过强化教育,班级在学校“交通法规”竞赛中成绩有了较大提高,结果优秀人数占合格人数的,比不合格人数多10人.本次竞赛结果是否完成了赵老师预设的目标?请说明理由.5、已知:线段m.求作:矩形ABCD,使矩形宽AB=m,对角线AC=m.6、平面直角坐标系中有点、,连接AB,以AB为直角边在第一象限内作等腰直角三角形,则点C的坐标是_________.7、在平面直角坐标系xOy中,△ABC的位置如图所示.(1)分别写出以下顶点的坐标:点A、点B.(2)顶点C关于y轴对称的点C′的坐标.(3)顶点B关于直线x=﹣1的对称点坐标.-参考答案-一、单选题1、B【解析】【分析】过作轴,可证得,从而得到,,可得到再由,,即可求解.【详解】解:过作轴,则,对于直线,令,得到,即,,令,得到,即,,,为等腰直角三角形,即,,,,在和中,,,,,即,,设直线的解析式为,,b=2−5k+b=3,解得.过、两点的直线对应的函数表达式是.故选:B【点睛】本题主要考查了求一次函数解析式,一次函数的图象和性质,全等三角形的判定和性质,等腰三角形的性质,熟练掌握相关知识点,并利用数形结合思想解答是解题的关键.2、B【解析】【分析】选项A根据多边形的外角和定义判断即可;选项B根据三角形全等的判定方法判断即可;选项C根据轴对称图形的定义判断即可;选项D根据轴对称的性质判断即可.【详解】解:A.所有多边形的外角和为,故本选项不合题意;B.任意两边对应相等的两个直角三角形全等,说法正确,故本项符合题意;C.等腰三角形有1条对称轴,故本选项不合题意;D.如果两个三角形一模一样,那么它们不一定形成轴对称图形,故本选项不合题意;故选:B.【点睛】此题主要考查了多边形的外角和,轴对称的性质,等腰三角形的性质,全等三角形的判定,解题的关键是掌握轴对称图形的概念.3、C【解析】【分析】先确定点D关于直线AO的对称点E(0,2),确定直线CE的解析式,直线AO的解析式,两个解析式的交点就是所求.【详解】∵∠OBA=90°,A(4,4),且,点D为OB的中点,∴点D(2,0),AC=1,BC=3,点C(4,3),设直线AO的解析式为y=kx,∴4=4k,解得k=1,∴直线AO的解析式为y=x,过点D作DE⊥AO,交y轴于点E,交AO于点F,∵∠OBA=90°,A(4,4),∴∠AOE=∠AOB=45°,∴∠OED=∠ODE=45°,OE=OD,∴DF=FE,∴点E是点D关于直线AO的对称点,∴点E(0,2),连接CE,交AO于点P,此时,点P是四边形PCBD周长最小的位置,设CE的解析式为y=mx+n,∴,解得,∴直线CE的解析式为y=x+2,∴y=1解得,∴使四边形PDBC周长最小的点P的坐标为(,),故选C.【点睛】本题考查了一次函数的解析式,将军饮马河原理,熟练掌握待定系数法和将军饮马河原理是解题的关键.4、D【解析】【分析】先结合图象分析出矩形AD和AB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.【详解】解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,当P点到达B点时,从图象看出x=3,即AB=3.当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为,在Rt△ABP中,,由面积相等可知:,解得,故选:D.【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.5、C【解析】【分析】由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.【详解】解:令直线中,得到,故,令直线中,得到,故,由勾股定理可知:,∵,且,∴,,过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:∵为等边三角形,∴,∴,∴,∴,∴,同理,∵为等边三角形,∴,,∴,∴,∴,设直线CD的解析式为:y=kx+b,代入和,得到:,解得,∴CD的解析式为:,与直线联立方程组,解得,故E点坐标为,故选:C.【点睛】本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.6、A【解析】【分析】根据多边形对角线公式解答.【详解】解:十边形中过其中一个顶点有10-3=7条对角线,故选:A.【点睛】此题考查了多边形对角线公式,理解公式的得来方法是解题的关键.7、A【解析】【分析】结合题意,得一次函数y=(m2+1)x-1,随x的增大而增大,根据函数的递增性分析,即可得到答案.【详解】∵∴一次函数y=(m2+1)x-1,随x的增大而增大∵∴故选:A.【点睛】本题考查了一次函数的知识;解题的关键是熟练掌握一次函数图像的性质,从而完成求解.二、填空题1、三【解析】【分析】先根据一次函数y=﹣2x+7判断出k、b的符号,再根据一次函数的性质进行解答即可.【详解】解:∵一次函数y=﹣2x+7中,k=﹣2<0,b=7>0,∴此函数的图象经过第一、二、四象限,∴此函数的图象不经过第三象限.故答案为:三.【点睛】本题考查了一次函数图象与系数的关系:对于y=kx+b(k为常数,k≠0),当k>0,b>0,y=kx+b的图象在一、二、三象限;当k>0,b<0,y=kx+b的图象在一、三、四象限;当k<0,b>0,y=kx+b的图象在一、二、四象限;当k<0,b<0,y=kx+b的图象在二、三、四象限.2、3.6##【解析】【分析】首先通过HL证明Rt△ABE≌Rt△AFB,得BE=EF,同理可得:DG=FG,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,利用勾股定理列方程求出BE=2,S△AFC=S△AEC﹣S△AEF﹣S△EFC代入计算即可.【详解】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠D=90°,∵将AB边沿AE折叠到AF,∴AB=AF,∠B=∠AFB=90°,在Rt△ABE和Rt△AFB中,,∴Rt△ABE≌Rt△AFB(HL),∴BE=EF,同理可得:DG=FG,∵点G恰为CD边中点,∴DG=FG=3,设BE=x,则CE=6﹣x,EG=3+x,在Rt△CEG中,由勾股定理得:(x+3)2=32+(6﹣x)2,解得x=2,∴BE=EF=2,CE=4,∴S△CEG=×4×3=6,∵EF∶FG=2∶3,∴S△EFC=×6=,∴S△AFC=S△AEC﹣S△AEF﹣S△EFC=×4×6﹣×2×6﹣=12﹣6﹣=3.6.故答案为:3.6.【点睛】本题考查了三角形全等的性质与判定,勾股定理,正方形的性质,根据勾股定理求得BE的长是解题的关键.3、①②③【解析】【分析】由“SAS”可证△ABH≌△FBC,故①正确;由平行线间的距离处处相等,可得S△ABH=S△BCH=S正方形BCIH,故②正确;同理可证矩形BFGD的面积=2△ABH的面积,故③正确;由勾股定理可得BD2+AD2+2CD2=BF2,故④错误,即可求解.【详解】解:∵四边形ABFE和四边形CBHI是正方形,∴AB=FB,HB=CB,∠ABF=∠CBH=90°,∴∠CBF=∠HBA,∴△ABH≌△FBC(SAS),故①正确;如图,连接HC,∵AI∥BH,∴S△ABH=S△BCH=S正方形BCIH,∴正方形BCIH的面积=2△ABH的面积,故②正确;∵CG∥BF,∴S△CBF=×BF×BD=S矩形BDGF,∴矩形BFGD的面积=2△ABH的面积,故③正确;∵BC2=CD2+DB2,AC2=CD2+AD2,BC2+AC2=AB2,∴BD2+CD2+CD2+AD2=AB2=BF2,∴BD2+AD2+2CD2=BF2,故④错误,故答案为:①②③.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,平行线的性质,勾股定理等知识,灵活运用这些性质解决问题是解题的关键.4、72【解析】【分析】先根据正五边形的内角和求出它的每个内角的度数,再根据等腰三角形的性质可得的度数,然后根据角的和差即可得.【详解】解:五边形是正五边形,,,,故答案为:72.【点睛】本题考查了正多边形的性质、等腰三角形的性质等知识点,熟练掌握正多边形的性质是解题关键.5、10【解析】【分析】把点代入解析式,即可求解.【详解】解:∵点是直线上一点,∴.故答案为:10【点睛】本题主要考查了一次函数的性质,熟练掌握一次函数的性质是解题的关键.6、①②④7、【解析】【分析】根据题意可知∠AFD=90°,利用勾股定理得DF=,再证明AD=DE,即可得出EF的长,从而解决问题.【详解】如图,∵将纸片沿AE折叠,使点B落在点F处,∴AB=AF=3,∠B=∠AFE=90°,∠AEB=∠AED,∵AD∥BC,∴∠DAE=∠AED,∴∠DAE=∠AED,∴AD=DE=4,在Rt△ADF中,由勾股定理得:,∴EF=DE-DF=,∴BE=EF=,故答案为:.【点睛】本题主要考查了翻折变换,勾股定理,等腰三角形的判定,平行线的性质等知识,证明AD=DE是解题的关键.8、【解析】【分析】由两个一次函数的图象平行求解再把(2,3)代入函数的解析式求解即可.【详解】解:直线y=kx+b(k≠0)的图像与直线y=-2x平行,把点(2,3)代入中,解得:所以一次函数的解析式为:故答案为:【点睛】本题考查的是利用待定系数法求解二次函数的解析式,掌握“两直线平行,两个一次函数的比例系数相等,而不相等”是解本题的关键.三、解答题1、(1)k=;(2)−1<k<,且k≠0.【解析】【分析】(1)设OA的中点为M,根据M、P两点的坐标,运用待定系数法求得k的值;(2)当一次函数y=kx+b的图象过B、P两点时,求得k的值;当一次函数y=kx+b的图象过A、P两点时,求得k的值,最后判断k的取值范围.(1)解:设OA的中点为M,∵O(0,0),A(4,0),∴OA=4,∴OM=2,∴M(2,0),∵一次函数y=kx+b的图象过M(2,0),P(6,1)两点,∴,解得:k=;(2)如图,由一次函数y=kx+b的图象过定点P,作直线BP,AP与平行四边形只有一个交点,由于直线与平行四边形有两个交点,所以直线应在直线BP,AP之间,当一次函数y=kx+b的图象过B、P两点时,代入表达式y=kx+b得到:,解得:k=-1,当一次函数y=kx+b的图象过A、P两点时,代入表达式y=kx+b得到:,解得:k=,所以−1<k<,由于要满足一次函数的存在性,所以−1<k<,且k≠0.【点睛】本题考查了运用待定系数法求一次函数解析式,解题时注意:求正比例函数y=kx,只要一对x,y的值;而求一次函数y=kx+b,则需要两组x,y的值.2、(1)(5,0);(3,2);(2)(3)a>1或a<-3【解析】【分析】(1)由正方形边长相等可得C的坐标,由正方形对角线互相垂直可得D的坐标,两点确定一条直线可得直线AB解析式y=-x+1,直线AB与直线y=-x平行,且与x轴夹角为45°,延长DA到点E交直线y=-x于E点,由勾股定理得AE=,由两点间距离公式DA=2,即DE=;(2)过C点作CM⊥x,垂足为M,过D作DN⊥y轴,垂足为N,证△AOB≌△BMC,可得C的坐标,同理,△DNA≌△AOB可得D为(4,7),过C作CE垂直y=x,垂足为E,直线CE的解析式为y=-x+10,直线CE:y=-x+10与y=x+2相交点为E(4,6),由两点距离公式可得CE=3;(3)由题意易得AB=2,分情况讨论,当a>-1时,C(a+2,-1),D(a+2,1),同(2)的思路方法可得a>1,当a<-1时,C(a-2,-1),D(a-2,1),同(2)的思路方法可得a<-3.(1)如图:∵A(1,0),B(3,-2),由图可知:正方形的边长相等可得点C坐标为(5,0),由正方形的对角线互相垂直得点D坐标为(3,2);由A(1,0),B(3,-2)可得直线AB:y=-x+1,直线AB与直线y=-x平行且与x轴的夹角为45°,故C、D点到直线y=-x的距离即逆序正方形ABCD到直线y=-x的距离,延长DA交点E交直线y=-x于E∴∴AE=OE∴∴∴AE=,由两点间距离公式得:,∴;故答案为:(5,0);(3,2);(2)过C点作CM⊥x,垂足为M,过D作DN⊥y轴,垂足为N,∵∠ABO+∠CBM=90°,∠BAO+∠ABO=90°,∴∠BAO=∠CBM,∵AB=BC,∠O=∠M=90°,∴△AOB≌△BMC(ASA),∴CM=3,BM=4,∴C的坐标为(7,3),同理,△DNA≌△AOB(ASA),∴DN=AO=4,AN=OB=3,∴D的坐标为(4,7),由图象知,C到y=x+2的距离最近,过C作CE垂直y=x,垂足为E,设直线CE的解析式为y=-x+b,把C代入上式得b=10,∴直线CE:y=-x+10,,解得,,∴E的坐标为(4,6),∴;(3)∵A(a,1),B(a,-1),∴AB=2,若a>-1,则C(a+2,-1),D(a+2,1),点C到直线y=x的距离最大,过C作y=x的垂线,垂足为E,设直线CE的解析式为y=-x+b,把C(a+2,-1)代入上式得b=a+1,,解得,∴E的坐标,当C到直线y=x的距离为时,,解得a=1或a=-7(舍),即a>1;当a<-1时,由题意得C(a-2,-1),D(a-2,1),D到y=x的距离最大,当D到y=x的距离为时,同理得a=-3,即a<-3,综上所述,a>1或a<-3.【点睛】本题考查一次函数的应用,解本题的关键要熟练掌握三角形全等的判断,解二元一次方程组,代入法求直线解析式,两点间距离公式等.3、(1)y=1.5x(2)y=2.2x−5.6(3)13吨【解析】【分析】(1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;(2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;(3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.(1)根据题意可知:当0<x⩽8时,y=1.5x;(2)根据题意可知:当时,y=1.5×8+2.2×(x−8)=2.2x−5.6;(3)当0<x⩽8时,y=1.5x,的最大值为1.5×8=12(元),12<23,该户当月用水超过8吨.令y=2.2x−5.6中y=23,则23=2.2x−5.6,解得:x=13.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.4、(1)七(3)班共有50名学生;(2)合格率为80%以及优秀率为18%均小于定下的目标;(3)合格率及优秀率均达到目标.理由见解析.【解析】【分析】(1)计算各频数之和即可求解;(2)计算得出合格率和优秀率,与目标值比较即可;(3)设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,根据题意列出一元一次方程求解即可.(1)解:4+6+9+10+12+9=50(名),答:七(3)班共有50名学生;(2)解:x≥90的学生人数有9人,则优秀率为950×100%=18%<25%;x≥60的学生人数有9+10+12+9=40人,则合格率为4050×100%=80%<90%;答:合格率为80%以及优秀率为18%均小于定下的目标;(3)解:合格率及优秀率均达到目标.理由如下:设优秀人数为x人,则合格人数为3x人,不合格人数为(x-10)人,依题意得:3x+x-10=50,解得:x=15,合格人数为3x=3×15=45(人),则合格率为4550×100%=90%;优秀人数为x=15(人),则合格率为1550×100%=30%>25%;答:合格率及优秀率均达到目标.【点睛】本题考查了条形统计图,一元一次方程的应用,解决本题的关键是掌握条形统计图.5、见详解【解析】【分析】先作m的垂直平分线,取m的一半为AB,然后以点A为圆心,以m长为半径画弧,交m的垂直平分线于C,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 教师招聘之《小学教师招聘》模拟题库讲解及答案详解(全优)
- 河流生态监测创新创业项目商业计划书
- 汽车动力性能展示创新创业项目商业计划书
- 用电负荷平衡创新创业项目商业计划书
- 2025年教师招聘之《小学教师招聘》考前冲刺测试卷包含答案详解【基础题】
- 教师招聘之《幼儿教师招聘》综合提升测试卷含答案详解【典型题】
- 教师招聘之《小学教师招聘》过关检测及参考答案详解【a卷】
- 2025年教师招聘之《幼儿教师招聘》题库必背100题附答案详解【考试直接用】
- 教师招聘之《幼儿教师招聘》复习试题及参考答案详解(典型题)
- 教师招聘之《小学教师招聘》考试历年机考真题集及参考答案详解【典型题】
- JT-T-332-1997船用塑钢门窗-PDF解密
- 道德与法治三年级上册人教版教案全册
- 北京丰台长峰医院重大火灾事故调查报告
- 产科医疗纠纷原因及分析
- 口腔常见粘膜病
- JC-T 2113-2012普通装饰用铝蜂窝复合板
- JB T 6527-2006组合冷库用隔热夹芯板
- 2022上海秋季高考语文卷详解(附古诗文翻译)5
- 定制手办目标市场调研
- 新版规范(2017)沥青混凝土路面设计(详细应用)
- 机器学习基础讲义
评论
0/150
提交评论