难点解析-冀教版8年级下册期末试卷(原创题)附答案详解_第1页
难点解析-冀教版8年级下册期末试卷(原创题)附答案详解_第2页
难点解析-冀教版8年级下册期末试卷(原创题)附答案详解_第3页
难点解析-冀教版8年级下册期末试卷(原创题)附答案详解_第4页
难点解析-冀教版8年级下册期末试卷(原创题)附答案详解_第5页
已阅读5页,还剩26页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、平面直角坐标系中,点到y轴的距离是()A.1 B.2 C.3 D.42、一多边形的每一个内角都等于它相邻外角的4倍,则该多边形的内角和是()A.360° B.900° C.1440° D.1800°3、在平面直角坐标系中,点A(3,-4)在()A.第一象限 B.第二象限 C.第三象限 D.第四象限4、甲、乙两车从A城出发匀速行驶至B城.在整个行驶过程中,甲、乙两车离开A城的距离y(千米)与甲车行驶的时间t(小时)之间的函数关系如图所示.则下列结论:①A,B两城相距300千米;②乙车比甲车晚出发1小时,却早到1小时;③乙车出发后2.5小时追上甲车;④当甲、乙两车相距50千米时,或.其中正确的结论有()A.1个 B.2个 C.3个 D.4个5、如图所示各图中反映了变量y是x的函数是()A. B.C. D.6、如图,在矩形ABCD中,动点P从点A出发,沿A→B→C运动,设,点D到直线PA的距离为y,且y关于x的函数图象如图所示,则当和的面积相等时,y的值为()A. B. C. D.7、已知点,在一次函数y=-2x-b的图像上,则m与n的大小关系是()A.m>n B.m=n C.m<n D.无法确定第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、函数和的图象相交于点,则方程的解为______.2、如图,在平面直角坐标系xOy中,菱形ABCD的顶点A,D分别在y轴的正半轴和负半轴上,顶点B在x轴的负半轴上,若OA=3OD,S菱形ABCD=16,则点C的坐标为______.3、正比例函数图像经过点(1,-1),那么k=__________.4、过某个多边形的一个顶点的所有对角线,将这个多边形分成6个三角形,这个多边形是___边形.5、定义:在平面内,一个点到图形的距离是这个点到这个图上所有点的最短距离,在平面内有一个正方形,边长为6,中心为O,在正方形外有一点P,,当正方形绕着点O旋转时,则点P到正方形的最短距离d的最大值为______.6、如图,平行四边形ABCD中,BD为对角线,,BE平分交DC于点E,连接AE,若,则为______度.7、在函数y=中,自变量x的取值范围是_____.8、已知点P(a,b)在一次函数y=-2x+1的图象上,则2a+b=______.三、解答题(7小题,每小题10分,共计70分)1、已知在与中,,点在同一直线上,射线分别平分.(1)如图1,试说明的理由;(2)如图2,当交于点G时,设,求与的数量关系,并说明理由;(3)当时,求的度数.2、A、B两地相距20千米,甲、乙两人某日中午12点同时从A地出发匀速前往B地,甲的速度是每小时4千米,如图,线段OM反映了乙所行的路程s与所用时间t之间的函数关系,根据提供的信息回答下列问题:(1)乙由A地前往B地所行的路程s与所用时间t之间的函数解析式是,定义域是;(2)在图中画出反映甲所行驶的路程s与所用时间t之间的函数图象;(3)下午3点时,甲乙两人相距千米.3、国庆期间,小龚自驾游去了离家156千米的月亮湾,如图是小龚离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象.(1)求小龚出发36分钟时,离家的距离;(2)求出AB段的图象的函数解析式;(3)若小龚离目的地还有72千米,求小龚行驶了多少小时.4、如图所示,在每个小正方形的边长均为1的网格中,线段AB的端点A、B均在小正方形的顶点上.(1)在图中画出等腰△ABC,且△ABC为钝角三角形,点C在小正方形顶点上;(2)在(1)的条件下确定点C后,再画出矩形BCDE,D,E都在小正方形顶点上,且矩形BCDE的周长为16,直接写出EA的长为.5、在初中阶段的函数学习中,我们经历了列表、描点、连线画函数图象,并结合图象研究函数性质的过程,以下是我们研究函数的性质及其应用的部分过程,请按要求完成下列各小题.x…﹣4﹣3﹣2﹣1012345…y…6a0﹣1.5﹣2﹣1.5020b…(1)表中a=;b=;(2)根据表中的数据画出该函数的大致图象,并根据函数图象写出该函数的一条性质.(3)已知直线的图象如图所示,结合你所画的函数图象,当y1>y2时直接写出x的取值范围.(保留1位小数,误差不超过0.2)6、如图,在Rt△ABC中,∠ABC=90°,∠C=30°,AC=12cm,点E从点A出发沿AB以每秒1cm的速度向点B运动,同时点D从点C出发沿CA以每秒2cm的速度向点A运动,运动时间为t秒(0<t<6),过点D作DF⊥BC于点F.(1)试用含t的式子表示AE、AD、DF的长;(2)如图①,连接EF,求证四边形AEFD是平行四边形;(3)如图②,连接DE,当t为何值时,四边形EBFD是矩形?并说明理由.7、在平面直角坐标系中,点,点,点.以点O为中心,逆时针旋转,得到,点的对应点分别为.记旋转角为.(1)如图①,当点C落在上时,求点D的坐标;(2)如图②,当时,求点C的坐标;(3)在(2)的条件下,求点D的坐标(直接写出结果即可).-参考答案-一、单选题1、A【解析】【分析】根据点到轴的距离是横坐标的绝对值,可得答案.【详解】解:∵,∴点到轴的距离是故选:A【点睛】本题考查的是点到坐标轴的距离,掌握点到轴的距离是横坐标的绝对值是解题的关键.2、C【解析】【分析】设每一个外角都为x,则相邻的内角为4x,然后根据“邻补角和为180°”列方程求得外角的大小,然后再根据多边形外角和定理求得多边形边数,最后运用多边形内角和公式求解即可.【详解】解:设每一个外角都为x,则相邻的内角为4x,由题意得,4x+x=180°,解得:x=36°,多边形的外角和为360°,360°÷36°=10,所以这个多边形的边数为10,则该多边形的内角和是:(10﹣8)×180=1440°.故选:C.【点睛】本题主要考查了多边形内角和相邻外角的关系、多边形的外角和、多边形内角和等知识点,掌握多边形的外角和为360°是解答本题的关键.3、D【解析】【分析】根据直角坐标系中点的坐标的特点解答即可.【详解】∵3>0,-4<0,∴点(3,-4)在第四象限,故选:D.【点睛】本题考查直角坐标系中点的坐标的符号特点,第一象限为(+,+),第二象限为(-,+),第三象限为(-,-),第四象限为(+,-).4、B【解析】【分析】当不动时,距离300千米,就是A,B两地的距离;甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,确定甲,乙的函数解析式,求交点坐标;分甲出发,乙未动,距离为50千米,甲出发,乙出发,且甲在前50距离50千米,甲在后距离50千米,乙到大时距离为50千米四种情形计算即可.【详解】∵(0,300)表示不动时,距离300千米,就是A,B两地的距离,∴①正确;∵甲匀速运动,走完全程用时5小时,乙走完全程用时3小时,∴乙车比甲车晚出发1小时,却早到1小时;∴②正确;设,∴300=5m,解得m=60,∴;设,∴解得,∴;∴解得t=2.5,∴2.5-1=1.5,∴乙车出发后1.5小时追上甲车;∴③错误;当乙未出发时,,解得t=;当乙出发,且在甲后面时,,解得t=;当乙出发,且在甲前面时,,解得t=;当乙到大目的地,甲自己行走时,,解得t=;∴④错误;故选B.【点睛】本题考查了函数的图像,一次函数的解析式确定,交点的意义,熟练掌握待定系数法,准确捕获图像信息是解题的关键.5、D【解析】【分析】函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,只有D正确.故选:D.【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.6、D【解析】【分析】先结合图象分析出矩形AD和AB边长分别为4和3,当△PCD和△PAB的面积相等时可知P点为BC中点,利用面积相等求解y值.【详解】解:当P点在AB上运动时,D点到AP的距离不变始终是AD长,从图象可以看出AD=4,当P点到达B点时,从图象看出x=3,即AB=3.当△PCD和△PAB的面积相等时,P点在BC中点处,此时△ADP面积为,在Rt△ABP中,,由面积相等可知:,解得,故选:D.【点睛】本题主要考查了函数图形的认识,分析图象找到对应的矩形的边长,解决动点问题就是“动中找静”,结合图象找到“折点处的数据真正含义”便可解决问题.7、A【解析】【分析】由k=−2<0,利用一次函数的性质可得出y随x的增大而减小,结合<可得出m>n.【详解】解:∵k=−2<0,∴y随x的增大而减小,又∵点A(,m),B(,n)在一次函数y=−2x+1的图象上,且<,∴m>n.故选:A.【点睛】本题考查了一次函数的性质,牢记“k>0,y随x的增大而增大;k<0,y随x的增大而减小”是解题的关键.二、填空题1、【解析】【分析】由题意知,方程的解为其交点的横坐标,进而可得结果.【详解】解:由题意知的解为两直线交点的横坐标故答案为:.【点睛】本题考查了一次函数图象的交点与一次方程解的关系.解题的关键在于理解一次函数图象的交点与一次方程解的关系.2、(-2,-8)【解析】【分析】由菱形的性质可得出,即,,再根据勾股定理可求出OB的长度.设,则,列等式,求出,则答案可解.【详解】,四边形ABCD为菱形,,,即,,,.设则,,即,,解得(舍去).在轴上,,即轴,则轴,.【点睛】本题考查了菱形的性质及勾股定理,根据菱形的性质结合勾股定理求出、、的长是解题的关键.3、-2【解析】【分析】由正比例函数的图象经过点的坐标,利用一次函数图象上点的坐标特征可得出-1=k+1,即可得出k值.【详解】解:∵正比例函数的图象经过点(1,-1),∴-1=k+1,∴k=-2.故答案为:-2.【点睛】本题考查了正比例函数图象上点的坐标特征,牢记直线上任意一点的坐标都满足函数关系式y=kx是解题的关键.4、八【解析】【分析】根据n边形从一个顶点出发可引出(n-3)条对角线,可组成(n-2)个三角形,依此可得n的值,即得出答案.【详解】解:由题意得,n-2=6,解得:n=8,故答案为:八.【点睛】本题考查了多边形的对角线,解题的关键是熟知一个n边形从一个顶点出发,可将n边形分割成(n-2)个三角形.5、3【解析】【分析】由题意以及正方形的性质得OP过正方形ABCD各边的中点时,d最大,求出d的值即可得出答案【详解】解:如图:设AB的中点是E,OP过点E时,点O与边AB上所有点的连线中,OE最小,此时d=PE最大,∵正方形ABCD边长为6,O为正方形中心,∴AE=3,∠OAE=45°,OE⊥AB,∴OE=3,∵OP=6,∴d=PE=6-3=3;故答案为:3【点睛】本题考查正方形的性质,旋转的性质,根据题意得出d最大时点P的位置是解题的关键.6、22【解析】【分析】先根据平行四边形的性质可得,从而可得,再根据等边三角形的判定证出是等边三角形,根据等边三角形的性质可得,从而可得,然后根据三角形全等的判定定理证出,最后根据全等三角形的性质即可得.【详解】解:平行四边形中,,,,,平分,,是等边三角形,,,在和中,,,,故答案为:22.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,正确找出两个全等三角形是解题关键.7、x≠【解析】【分析】根据分式分母不为0列出不等式,解不等式得到答案.【详解】解:由题意得:3x−4≠0,解得:x≠,故答案为:x≠.【点睛】本题考查的是函数自变量的取值范围的确定,掌握分式分母不为0是解题的关键.8、1【解析】【分析】将点P坐标代入解析式可求b=-2a+1,即可求解.【详解】解:∵点P(a,b)在一次函数y=-2x+1的图象上,∴b=-2a+1,∴2a+b=1,故答案为:1.【点睛】本题考查了一次函数图象上点的坐标特征,熟练掌握函数图象上点的坐标满足函数解析式是本题的关键.三、解答题1、(1)理由见解析(2),理由见解析(3)【解析】【分析】(1),,可知,进而可说明;(2)如图1所示,连接并延长至点K,分别平分,则设,为的外角,,同理,,得;又由(1)中证明可知,,进而可得到结果;(3)如图2所示,过点C作,则,,可得,由(1)中证明可得,在中,,即,进而可得到结果.(1)证明:又在和中.(2)解:.理由如下:如图1所示,连接并延长至点K分别平分则设为的外角同理可得即.又由(1)中证明可知由三角形内角和公式可得即.(3)解:当时,如图2所示,过点C作,则,即由(1)中证明可得在中,根据三角形内角和定理有即即即,解得:故.【点睛】本题考查了全等三角形的判定与性质、三角形的外角性质、三角形内角和定理、平行线的性质、角平分线的性质等知识,连接并延长,利用三角形外角性质证得是解题的关键.2、(1)s=t;0≤t≤6(2)见解析(3)2【解析】【分析】(1)设直线的解析式为,将代入即可求出,由图象可直接得出的范围;(2)根据甲的速度,可得出行驶时间,得到终点时点的坐标,作出直线即可;(3)用甲行驶的路程减去乙行驶的路程即可.(1)解:设直线的解析式为,且,,解得;;由图象可知,;故答案为:;;(2)解:甲的速度是每小时4千米,甲所用的时间(小时),,图象如下图所示:(3)解:下午3点时,甲、乙两人之间的距离为:.故答案为:2.【点睛】本题考查一次函数的应用,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.3、(1)36千米(2)y=90x-24(0.8≤x≤2)(3)1.2小时【解析】【分析】(1)由OA段可求得此时小龚驾车的速度,从而可求得36分钟离家的距离;(2)用待定系数法.AB段过点A与B,把这两点的坐标代入所设函数解析式中即可求得函数解析式;(3)由题意可得小龚离家的距离,根据(2)中求得的函数解析式的函数值,解方程即可求得x的值,从而求得小龚行驶的时间.(1)在OA段,小龚行驶的速度为:48÷0.8=60(千米/时),36分钟=0.6小时,则小龚出发36分钟时,离家的距离为60×0.6=36(千米);(2)由图象知:,设AB段的函数解析式为:把A、B两点的坐标分别代入上式得:解得:∴AB段的函数解析式为(0.8≤x≤2)(3)由图象知,当小龚离目的地还有72千米时,他已行驶了156−72=84(千米)所以在中,当y=84时,即,得即小龚离目的地还有72千米,小龚行驶了1.2小时.【点睛】本题考查了一次函数(正比例函数)的图象与性质,待定系数法求函数解析式,已知函数值求自变量的值等知识,数形结合是本题的关键.4、(1)见解析(2)画图见解析,10【解析】【分析】(1)作出腰为5且∠ABC是钝角的等腰三角形ABC即可;(2)作出边长分别为5,3的矩形ABDE即可.(1)解:如图,AB=32+42=(2)解:如图,矩形BCDE即为所求.AE=12故答案为:10.【点睛】本题考查作图-应用与设计作图,等腰三角形的判定,矩形的判定,勾股定理等知识,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.5、(1)2.5;﹣2(2)见解析(3)x<﹣2或1.5<x<5【解析】【分析】(1)根据解析式计算即可;(2)利用描点法画出函数图象,观察图象可得函数的一条性质;(3)根据图象即可求解.(1)解:当x=﹣3时,y1=×(﹣3)2﹣2=2.5,∴a=2.5,当x=5时,y1=2﹣2×|5﹣3|=﹣2,∴b=﹣2,故答案为:2.5,﹣2;(2)解:画出函数图象如图所示:由图象得:x<0时,y随x的增大而减小;(3)画出直线的图象如图所示,由图象可知,当y1>y2时,x的取值范围为:x<﹣2或1.5<x<5.【点睛】本题考查函数图象和性质,能够从表格中获取信息,利用描点法画出函数图象,并结合函数图象解题是关键.6、(1)AE=t,AD=12﹣2t,DF=t(2)见解析(3)3,理由见解析【解析】【分析】(1)根据题意用含t的式子表示AE、CD,结合图形表示出AD,根据直角三角形的性质表示出DF;(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.(1)解:由题意得,AE=t,CD=2t,则AD=AC﹣CD=12﹣2t,∵DF⊥BC,∠C=30°,∴DF=CD=t;(2)解:∵∠ABC=90°,DF⊥BC,∴AB∥∵AE=t,DF=t,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论