




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学上册《分式》单元测评考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、已知,则分式与的大小关系是(
)A. B. C. D.不能确定2、下列等式成立的是()A.(-3)-2=-9 B.(-3)-2=C.=a14 D.=-a2b63、若关于x的方程有增根,则m的值为(
)A.2 B.1 C.0 D.4、已知m2+n2=n-m-2,则-的值是(
)A.1 B.0 C.-1 D.-5、要把分式方程化为整式方程,方程两边要同时乘以(
)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、计算:_____.2、某校为推进“数学文化智慧阅读”活动,采购了一批图书.其中《九章算术)和《几何原本》的单价共80元,用640元购进《九章算术》与用960元购进《几何原本》的数量相同.求这两本书的单价.设《九章算术》的单价为x元,依题意,列出方程:_____.3、若(x+1)0=1,则x的取值范围是________.4、方程的解为__________.5、用换元法解方程﹣=1,设y=,那么原方程可以化为关于y的整式方程为_____.三、解答题(5小题,每小题10分,共计50分)1、八年级学生去距学校10千米的博物馆参观,一部分同学骑自行车先走,过了20分后,其余同学乘汽车出发,结果他们同时到达,已知汽车的速度是骑车同学速度的2倍,求骑车同学的速度.2、(1)解方程:(2)计算:3、解下列方程(组):(1);(2).4、某商场在端午节来临之际用3000元购进A、B两种玩具110个,购买A玩具与购买B玩具的费用相同.已知A玩具的单价是B玩具单价的1.2倍.(1)求A、B两种玩具的单价各是多少?(2)若计划用不超过7000元的资金再次购进A、B两种玩具共260个,已知A、B两种玩具的进价不变.求A种玩具最多能购进多少个?5、计算:(1)()3÷•()2(2)()÷-参考答案-一、单选题1、A【解析】【分析】将两个式子作差,利用分式的减法法则化简,即可求解.【详解】解:,∵,∴,∴,故选:A.【考点】本题考查分式的大小比较,掌握作差法是解题的关键.2、B【解析】【分析】结合幂的乘方与积的乘方的概念和运算法则进行求解即可.【详解】解:A、(-3)2=9≠-9,本选项错误;B、(-3)-2=,本选项正确;C、(a-12)2=a-24≠a14,本选项错误;D、(-a-1b-3)-2=a2b6≠-a2b6,本选项错误.故选B.【考点】本题考查了幂的乘方与积的乘方,解答本题的关键在于熟练掌握该知识点的概念和运算法则.3、B【解析】【分析】先通过去分母把分式方程化为整式方程,再把增根代入整式方程,求出参数m,即可.【详解】解:把原方程去分母得:,∵原分式方程有增根:x=1,∴,即:m=1,故选B.【考点】本题主要考查分式方程增根的意义,理解使分式方程的分母为零的根,是分式方程的增根,是解题的关键.4、C【解析】【详解】分析:首先进行移项,然后转化为两个完全平方式,根据非负数的性质求出m和n的值,然后代入所求的代数式得出答案.详解:∴,
解得:m=-2,n=2,
∴,故选C.点睛:本题主要考查的是非负数的性质以及代数式的求值,属于中等难度的题型.将代数式转化为两个完全平方式是解决这个问题的关键.5、D【解析】【分析】根据最简公分母的确定方法确定分式的最简公分母即可解答.【详解】解:∵分式的最简公分母2x(x-2),∴把分式方程化为整式方程,方程两边要同时乘以2x(x-2).故选D.【考点】本题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.二、填空题1、【解析】【分析】先计算括号里的同分母的分式,再利用分式的乘法法则、分式的基本性质化简计算即可.【详解】原式,故答案为:.【考点】本题考查分式的混合运算,涉及同分母的分式加法、分式的乘法、分式的基本性质等知识,熟练掌握分式的运算顺序和运算法则是解答的关键.2、.【解析】【分析】设《九章算术》的单价为x元,《几何原本》的单价为(80-x)元,根据等量关系:用640元购进《九章算术》与用960元购进《几何原本》的数量相同.列方程即可.【详解】解:设《九章算术》的单价为x元,《几何原本》的单价为(80-x)元,依题意,列出方程:.故答案为:.【考点】本题考查列分式方程解应用题,掌握列分式方程解应用题的方法与步骤,抓住等量关系列方程是解题关键.3、x≠﹣1【解析】【详解】由题意得:x+1≠0,解得:x≠-1,故答案为:x≠-1.【考点】本题考查了零指数幂,解题的关键是熟知任何非零数的0次幂都等于1.4、【解析】【分析】先通分,再根据分式有意义的条件即分母不为0,分式为0即分式的分子为0解题即可.【详解】解:故答案为:.【考点】本题考查解分式方程,涉及分式有意义的条件、分式的值为0等知识,是重要考点,难度较易,掌握相关知识是解题关键.5、y2+y﹣2=0【解析】【分析】可根据方程特点设y=,则原方程可化为﹣y=1,化成整式方程即可.【详解】解:方程﹣=1,若设y=,把设y=代入方程得:﹣y=1,方程两边同乘y,整理得y2+y﹣2=0.故答案为:y2+y﹣2=0.【考点】本题主要考查用换元法解分式方程,它能够把一些分式方程化繁为简,化难为易,对此应注意总结能用换元法解的分式方程的特点,寻找解题技巧.三、解答题1、15千米/时.【解析】【分析】根据时间来列等量关系.关键描述语为:“过了20分后,其余同学乘汽车出发,结果他们同时到达”;等量关系为:骑自行车同学所用时间-乘车同学所用时间=.【详解】设骑车同学的速度为x千米/时.则:.解得:x=15.检验:当x=15时,6x≠0,∴x=15是原方程的解.答:骑车同学的速度为15千米/时.【考点】应用题中一般有三个量,求一个量,明显的有一个量,一定是根据另一量来列等量关系的.本题考查分式方程的应用,分析题意,找到关键描述语,找到合适的等量关系是解决问题的关键.2、(1)原分式方程无解(2)【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)首先将式子通分,化成同分母,分子合并同类项即可.【详解】解:(1)经检验:是增根所以原方程无解.(2)原式====.【考点】本题考查了解分式方程和分式的化简,解题的关键是熟练掌握分式方程的解法和分式的化简运算法则.3、(1);(2)无解.【解析】【分析】(1)用加减消元法解方程组即可;(2)先去分母,把分式方程转化为整式方程,求出方程的解,再进行检验即可.【详解】解:(1)①+②,得6x=18,4、(1)A种玩具单价为30元/个,B种玩具单价为25元/个(2)100个【解析】【分析】(1)先设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,根据等量关系购进A玩具数量+购进B玩具数量=110,列分式方程,求解即可;(2)设购进A种玩具m个,则购进B种玩具个,根据A总价+B总价不超过7000元列出一元一次不等式,求解即可.(1)解:设B种玩具单价为x元/个,则A种玩具单价为1.2x元/个,根据题意,得解得:,经检验,是原方程的解,且符合题意,∴答:A种玩具单价为30元/个,B种玩具单价为25元/个.(2)设购进A种玩具m个,则购进B种玩具个,依题意,得:,解得:答:A种玩具最多能购进100个.【考点】本题考查了分式方程的应用之购物问题及一元一次不等式的实际应用,解题的关键是找到等量关系或者不
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 药厂知识培训要点课件
- Unit3 It must belong to Carla.复习课件(内嵌音频) 鲁教版(五四制)九年级全册
- 农业生产信息化与智能农业合作协议
- 奖励自己小学作文(7篇)
- 高考美术培训课件
- 减糖行动培训课件
- 产品市场推广策划及实施辅助工具
- 剖宫产麻醉护理查房
- 《我不能失信》课件 统编版三年级语文下册
- 信息安全审计工具与风险识别
- 病理科实验室生物安全评估表
- 2024年高考作文备考之议论文写作素材:人物篇(墨子)
- 成人学习者数字素养的培养
- 管理会计模拟实训实验报告
- 数学知识讲座
- 新闻采访课件
- 赣县清溪中心学校早期民办、代课教师稳控应急预案
- 上市公司合规培训
- SPACEMAN(斯贝思曼)冰淇淋机 安装调试培训
- 利润分成合同
- 幼儿园劳动教育实践活动案例
评论
0/150
提交评论