难点解析人教版8年级数学上册《轴对称》章节训练试卷(含答案详解版)_第1页
难点解析人教版8年级数学上册《轴对称》章节训练试卷(含答案详解版)_第2页
难点解析人教版8年级数学上册《轴对称》章节训练试卷(含答案详解版)_第3页
难点解析人教版8年级数学上册《轴对称》章节训练试卷(含答案详解版)_第4页
难点解析人教版8年级数学上册《轴对称》章节训练试卷(含答案详解版)_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学上册《轴对称》章节训练考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,若点P(a-3,1)与点Q(2,b+1)关于x轴对称,则a+b的值是(

)A.1 B.2 C.3 D.42、如图,在中,,的周长10,和的平分线交于点,过点作分别交、于、,则的长为(

)A.10 B.6 C.4 D.不确定3、在平面直角坐标系中,点关于轴对称的点的坐标为(

)A. B. C. D.4、已知点与点关于轴对称,则点的坐标为(

)A. B. C. D.5、如图,等边的顶点,,规定把等边“先沿轴翻折,再向左平移1个单位”为一次变换,这样连续经过2021次变换后,顶点C的坐标为(

)A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,将一张长方形纸条折叠,若,则的度数为__________.2、如图,在中,,,垂直平分,垂足为Q,交于点P.按以下步骤作图:①以点A为圆心,以适当的长为半径作弧,分别交边于点D,E;②分别以点D,E为圆心,以大于的长为半径作弧,两弧相交于点F;⑤作射线.若与的夹角为,则________°.3、如图,在△ABC中,AD⊥BC,垂足为点D,CE是边AB上的中线,如果CD=BE,∠B=40°,那么∠BCE=_____度.4、在平面直角坐标系中,点与点关于轴对称,则的值是_____.5、等腰三角形的两边长分别是3cm和6cm,则它的周长是_________cm.三、解答题(5小题,每小题10分,共计50分)1、如图,在中,,的垂直平分线交于,交于.(1)若,则的度数是;(2)连接,若,的周长是.①求的长;②在直线上是否存在点,使由,,构成的的周长值最小?若存在,标出点的位置并求的周长最小值;若不存在,说明理由.2、已知,ABC三条边的长分别为.(1)若,当ABC为等腰三角形,求ABC的周长.(2)化简:.3、如图,在△ABC中,∠ACB=90°,∠A=30°,AB的垂直平分线分别交AB和AC于点D,E.(1)求证:AE=2CE;(2)连接CD,请判断△BCD的形状,并说明理由.4、在中,BE,CD为的角平分线,BE,CD交于点F.(1)求证:;(2)已知.①如图1,若,,求CE的长;②如图2,若,求的大小.5、如图,已知∠AOB=20°,点C是AO上一点,在射线OB上求作一点F,使得∠CFO=40°.(尺规作图,保留作图痕迹,并说明理由)-参考答案-一、单选题1、C【解析】【分析】直接利用关于轴对称点的性质:横坐标不变,纵坐标互为相反数,即可得出,的值,进而得出答案.【详解】解:点与点关于轴对称,,,,,则.故选:C.【考点】此题主要考查了关于轴对称点的性质,正确记忆关于轴对称点的符号关系是解题关键.2、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO=DB和EO=EC,从而得出DE=DB+EC,然后根据的周长即可求出AB.【详解】解:∵∴∠OBC=∠DOB∵BO平分∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO=DB同理可证:EO=EC∴DE=DO+EO=DB+EC∵,的周长10,∴AD+AE+DE=10∴AD+AE+DB+EC=10∴AB+AC=10∴AB=10-AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.3、D【解析】【分析】利用关于x轴对称的点坐标特征:横坐标不变,纵坐标互为相反数解答即可.【详解】点关于轴对称的点的坐标为(3,-2),故选:D.【考点】本题主要考查了关于坐标轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解答的关键.4、B【解析】【分析】根据关于轴对称的性质:横坐标相等,纵坐标互为相反数,即可得解.【详解】由题意,得与点关于轴对称点的坐标是,故选:B.【考点】此题主要考查关于轴对称的点坐标的求解,熟练掌握,即可解题.5、D【解析】【分析】先求出点C坐标,第一次变换,根据轴对称判断出点C变换后在x轴下方然后求出点C纵坐标,再根据平移的距离求出点C变换后的横坐标,最后写出第一次变换后点C坐标,同理可以求出第二次变换后点C坐标,以此类推可求出第n次变化后点C坐标.【详解】∵△ABC是等边三角形AB=3-1=2∴点C到x轴的距离为1+,横坐标为2∴C(2,)由题意可得:第1次变换后点C的坐标变为(2-1,),即(1,),第2次变换后点C的坐标变为(2-2,),即(0,)第3次变换后点C的坐标变为(2-3,),即(-1,)第n次变换后点C的坐标变为(2-n,)(n为奇数)或(2-n,)(n为偶数),∴连续经过2021次变换后,等边的顶点的坐标为(-2019,),故选:D.【考点】本题考查了利用轴对称变换(即翻折)和平移的特点求解点的坐标,在求解过程中找到规律是关键.二、填空题1、130°【解析】【分析】延长DC到点E,如图,根据平行线的性质可得∠BCE=∠ABC=25°,根据折叠的性质可得∠ACB=∠BCE=25°,进一步即可求出答案.【详解】解:延长DC到点E,如图:∵AB∥CD,∴∠BCE=∠ABC=25°,由折叠可得:∠ACB=∠BCE=25°,∵∠BCE+∠ACB+∠ACD=180°,∴∠ACD=180°﹣∠BCE﹣∠ACB=180°﹣25°﹣25°=130°,故答案为:130°.【考点】此题主要考查了平行线的性质和折叠的性质,正确添加辅助线、熟练掌握平行线的性质是解决问题的关键.2、55°.【解析】【分析】根据直角三角形两锐角互余得∠BAC=70°,由角平分线的定义得∠2=35°,由线段垂直平分线可得△AQM是直角三角形,故可得∠1+∠2=90°,从而可得∠1=55°,最后根据对顶角相等求出.【详解】如图,∵△ABC是直角三角形,∠C=90°,,,,∵是的平分线,,是的垂直平分线,是直角三角形,,,∵∠α与∠1是对顶角,.故答案为:55°.【考点】此题考查了直角三角形两锐角互余,角平分线的定义,线段垂直平分线的性质,对顶角相等等知识,熟练掌握相关定义和性质是解题的关键.3、20.【解析】【分析】连接ED,再加上AD⊥BC,利用直角三角形斜边上的中线等于斜边的一半,很容易可以推出△ECD为等腰三角形,根据等腰三角形的性质:等边对等角,以及外角性质即可求出∠BCE的度数.【详解】如图,连接ED,∵AD⊥BC,∴△ABD是直角三角形,∵CE是边AB上的中线,∴ED=AB=BE,∴∠EDB=∠B=40°,又∵CD=BE,∴ED=CD,∴∠DEC=∠DCE,∵∠EDB是△DEC的外角,∴∠EDB=∠DEC+∠DCE=2∠DCE=40°,∴∠DCE=∠EDB=20°,∵∠DCE即∠BCE,∴∠BCE=20°.【考点】本题考查的是直角三角形的性质,等腰三角形的性质,掌握直角三角形中,斜边上的中线等于斜边的一半是解题的关键.4、4【解析】【分析】根据关于x轴对称的两点的横坐标相同,纵坐标互为相反数求得a、b的值即可求得答案.【详解】点与点关于轴对称,,,则a+b的值是:,故答案为.【考点】本题考查了关于x轴对称的点的坐标特征,熟练掌握关于坐标轴对称的点的坐标特征是解此类问题的关键.5、15【解析】【分析】题目给出等腰三角形有两条边长为和,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【详解】解:当腰为时,,不能构成三角形,因此这种情况不成立.当腰为时,,能构成三角形;此时等腰三角形的周长为.故答案为:.【考点】本题考查了等腰三角形的性质和三角形的三边关系;解题的关键是题目从边的方面考查三角形,涉及分类讨论的思想方法.求三角形的周长,不能盲目地将三边长相加起来,而应养成检验三边长能否组成三角形的好习惯,把不符合题意的舍去.三、解答题1、(1)50°(2)①6cm;②存在点P,点P与点M重合,△PBC周长的最小值为【解析】【分析】(1)根据等腰三角形的性质得出∠B=∠C=70°,在△ABC中,根据三角形内角和定理求得∠A=40°,在△AMN中,根据三角形内角和定理求得∠NMA=50°;(2)①根据线段垂直平分线可得AM=BM,根据△MBC的周长=BM+BC+CM=AM+BC+CM即可求解;②根据对称轴的性质可知,M点就是点P所在的位置,△PBC的周长最小值就是△MBC的周长.【详解】解:(1)∵AB=AC,∴∠B=∠C=70°,∴∠A=180°-70°-70°=40°∵MN垂直平分AB交AB于N∴MN⊥AB,∠ANM=90°,在△AMN中,∠NMA=180°-90°-40°=50°;(2)①如图所示,连接MB,∵MN垂直平分AB交于AB于N∴AM=BM,∴△MBC的周长=BM+BC+CM=AM+BC+CM=BC+AC=又∵AB=AC=8cm,∴BC=14cm-8cm=6cm;②如图所示,∵MN垂直平分AB,∴点A、B关于直线MN对称,AC与MN交于点M,因此点P与点M重合;∴△MBC的周长就是△PBC周长的最小值,∴△PBC周长的最小值=△MBC的周长=.【考点】本题考查三角形内角和定理,线段垂直平分线性质,等腰三角形的性质,轴对称-最短路线问题.解题的关键是熟练掌握这些知识点.2、(1)△ABC的周长为10;(2).【解析】【分析】(1)利用非负数的性质求出a与b的值,即可确定出三角形周长;(2)根据三角形三边满足的条件是,两边和大于第三边,两边的差小于第三边,根据此来确定绝对值内的式子的正负,从而化简计算即可.【详解】解:(1)∵,∴a-2=0,b-4=0,∴a=2,b=4,∵△ABC为等腰三角形,当2为腰时,则三边为2,2,4,而2+2<4,不能组成三角形,舍去;当2为底时,则三边为2,4,4,而2+4>4,能组成三角形,∴△ABC的周长为2+4+4=10;(2)∵△ABC三条边的长分别为a、b、c,∴,,,即,,∴.【考点】本题主要考查了等腰三角形的性质,三角形的三边关系,以及绝对值的计算,第(2)问的关键是先根据三角形三边的关系来判定绝对值内式子的正负.3、见解析【解析】【分析】(1)连接BE,根据线段垂直平分线的性质可得AE=BE,利用等边对等角的性质可得∠ABE=∠A;结合三角形外角的性质可得∠BEC的度数,再在Rt△BCE中结合含30°角的直角三角形的性质,即可证明第(1)问的结论;(2)根据直角三角形斜边中线的性质可得BD=CD,再利用直角三角形锐角互余的性质可得到∠ABC=60°,至此不难判断△BCD的形状【详解】(1)证明:连结BE,如图.∵DE是AB的垂直平分线,∴AE=BE,∴∠ABE=∠A=30°,∴∠CBE=∠ABC-∠ABE=30°,在Rt△BCE中,BE=2CE,∴AE=2CE.(2)解:△BCD是等边三角形.理由如下:∵DE垂直平分AB,∴D为AB的中点.∵∠ACB=90°,∴CD=BD.又∵∠ABC=60°,∴△BCD是等边三角形.【考点】此题考查了线段垂直平分线的性质、30°角的直角三角形的性质,等腰三角形的性质,直角三角形斜边的中线等于斜边的一半,等边三角形的判定,熟练掌握30°角的直角三角形的性质是解(1)的关键,熟练掌握直角三角形斜边的中线等于斜边的一半是解(2)的关键,4、(1)证明见解析;(2)2.5;(3)100°.【解析】【分析】(1)由三角形内角和定理和角平分线得出的度数,再由三角形内角和定理可求出的度数,(2)在BC上取一点G使BG=BD,构造(SAS),再证明,即可得,由此求出答案;(3)延长BA到P,使AP=FC,构造(SAS),得PC=BC,,再由三角形内角和可求,,进而可得.【详解】解:(1)、分别是与的角平分线,,,,(2)如解(2)图,在BC上取一点G使BG=BD,由(1)得,,,∴,在与中,,∴(SAS)∴,∴,∴,∴在与中,,,,,;∵,,∴(3)如解(3)图,延长BA到P,使AP=FC,,∴,在与中,,∴(SAS)∴,,∴,又∵,∴,又∵,∴,∴,,∴,【考点】本题考查的是角平分线的性质、全等三角形的判定与性质,根据题意作出辅助线,构造出全等三角形是解答此题的关键.5、见解析【解析】【分析】先作O

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论