




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期末试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、二次函数的顶点坐标为,图象如图所示,有下列四个结论:①;②;③④,其中结论正确的个数为(
)A.个 B.个 C.个 D.个2、已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,则下列结论:①4a+2b+c>0
;②y随x的增大而增大;③方程ax2+bx+c=0两根之和小于零;④一次函数y=ax+bc的图象一定不过第二象限,其中正确的个数是(
)A.4个 B.3个 C.2个 D.1个3、一个四边形的各边之比为1∶2∶3∶4,和它相似的另一个四边形的最小边长为,则它的最大边长为(
)A. B. C. D.4、如果∆ABC的各边长都扩大为原来的3倍,那么锐角A的正弦、余弦值是(
)A.都扩大为原来的3倍 B.都缩小为原来的C.没有变化 D.不能确定5、如图,ABC是等边三角形,点D、E分别在BC、AC上,且∠ADE=60°,AB=9,BD=3,则CE的长等于()A.1 B. C. D.26、如果,那么的结果是(
)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、已知:如图,△ABC中,∠A=60°,BC为定长,以BC为直径的⊙O分别交AB、AC于点D、E.连接DE、OE.下列结论中正确的结论是()A.BC=2DE B.D点到OE的距离不变 C.BD+CE=2DE D.AE为外接圆的切线2、如图,在△ABC中,点D,E分别在边AB、AC上,下列条件中能判断△AED∽△ABC的是()A.∠AED=∠ABC B.∠ADE=∠ACBC. D.3、如图,在△EFG中,∠EFG=90°,FH⊥EG,下面等式中正确的是(
)A. B.C. D.4、如图,在Rt△ABC中,∠ACB=90°,BC=1,AB=2,则下列结论不正确的是()A.sinA= B.tanA= C.cosB= D.tanB=5、下列四组图形中,是相似图形的是(
)A. B.C. D.6、季是呼吸道疾病多发的季节,为预防病毒的传播,某学校用药熏消毒法对教室进行消毒,已知药物释放过程中,教室内每立方米空气中含药量与时间成正比例;药物释放完毕后,y与t成反比例,如图所示.空气中的含药量低于时对身体无害.则下列选项正确的是(
)A.药物释放过程中,y与t的函数表达式是B.药物的释放过程需要2hC.从开始消毒,6h后空气中的含药量低于D.空气中含药量不低于的时长为6h7、如果α、β都是锐角,下面式子中不正确的是(
)A.sin(α+β)=sinα+sinβ B.cos(α+β)=时,α+β=60°C.若α≥β时,则cosα≥cosβ D.若cosα>sinβ,则α+β>90°第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、抛物线是二次函数,则m=___.2、已知抛物线与x轴的一个交点为,则代数式的值为______.3、如图,△ABC中,∠ACB=90°,AB=5,AC=3,BC为半圆O的直径,将△ABC沿射线CB方向平移得到△A1B1C1.当A1B1与半圆O相切于点D时,平移的距离的长为_____.4、二次函数的最大值是__________.5、已知点A(3,a)、B(-1,b)在函数的图像上,那么a___b(填“>”或“=”或“<”)6、如图,在⊙O中,,,则图中阴影部分的面积是_________.(结果保留)7、定义:由a,b构造的二次函数叫做一次函数y=ax+b的“滋生函数”,一次函数y=ax+b叫做二次函数的“本源函数”(a,b为常数,且).若一次函数y=ax+b的“滋生函数”是,那么二次函数的“本源函数”是______.四、解答题(6小题,每小题10分,共计60分)1、解方程与计算(1)
(2)计算:.2、已知:如图,△ABC中,AB=AC,AB>BC.求作:线段BD,使得点D在线段AC上,且∠CBD=∠BAC.作法:①以点A为圆心,AB长为半径画圆;②以点C为圆心,BC长为半径画弧,交⊙A于点P(不与点B重合);③连接BP交AC于点D.线段BD就是所求作的线段.(1)使用直尺和圆规,依作法补全图形(保留作图痕迹);(2)完成下面的证明.证明:连接PC.∵AB=AC,∴点C在⊙A上.∵点P在⊙A上,∴∠CPB=∠BAC.()(填推理的依据)∵BC=PC,∴∠CBD=.()(填推理的依据)∴∠CBD=∠BAC.3、(1)解方程:(2)计算:4、计算:5、如图,一次函数y1=ax+b与反比例函数的图象相交于A(2,8),B(8,2)两点,连接AO,BO,延长AO交反比例函数图象于点C.(1)求一次函数y1的表达式与反比例函数y2的表达式;(2)当y1<y2,时,直接写出自变量x的取值范围;(3)点P是x轴上一点,当时,请求出点P的坐标.6、在“乡村振兴”行动中,某村办企业以,两种农作物为原料开发了一种有机产品,原料的单价是原料单价的1.5倍,若用900元收购原料会比用900元收购原料少.生产该产品每盒需要原料和原料,每盒还需其他成本9元.市场调查发现:该产品每盒的售价是60元时,每天可以销售500盒;每涨价1元,每天少销售10盒.(1)求每盒产品的成本(成本=原料费+其他成本);(2)设每盒产品的售价是元(是整数),每天的利润是元,求关于的函数解析式(不需要写出自变量的取值范围);(3)若每盒产品的售价不超过元(是大于60的常数,且是整数),直接写出每天的最大利润.-参考答案-一、单选题1、A【解析】【分析】根据二次函数的性质和已知条件,对每一项逐一进行判断即可.【详解】解:由图像可知a<0,c>0,∵对称轴在正半轴,∴>0,∴b>0,∴,故①正确;当x=2时,y>0,故,故③正确;函数解析式为:y=a(x-1)2+2=ax2-2ax+a+2假设成立,结合解析式则有a+2<,解得a<,故②,④正确;故选:A.【考点】本题考查了二次函数图象与系数的关系,结合图象,运用所学知识是解题关键.2、D【解析】【分析】根据函数的图象可知x=2时,函数值的正负性;并且可知与x轴有两个交点,即对应方程有两个实数根;函数的增减性需要找到其对称轴才知具体情况;由函数的图象还可知b、c的正负性,一次函数y=ax+bc所经过的象限进而可知正确选项.【详解】∵当x=2时,y=4a+2b+c,对应的y值为正,即4a+2b+c>0,故①正确;∵因为抛物线开口向上,在对称轴左侧,y随x的增大而减小;在对称轴右侧,y随x的增大而增大,故②错误;∵由二次函数y=ax2+bx+c(a≠0)的图象可知:函数图象与x轴有两个不同的交点,即对应方程有两个不相等的实数根,且正根的绝对值较大,∴方程ax2+bx+c=0两根之和大于零,故③错误;∵由图象开口向上,知a>0,与y轴交于负半轴,知c<0,由对称轴,知b<0,∴bc>0,∴一次函数y=ax+bc的图象一定经过第二象限,故④错误;综上,正确的个数为1个,故选:D.【考点】本题考查了二次函数的图象与系数的关系以及一次函数的图象,利用了数形结合的思想,此类题涉及的知识面比较广,能正确观察图象是解本题的关键.3、C【解析】【分析】设它的最大边长为,根据相似图形的性质求解即可得到答案【详解】解:设它的最大边长为,∵两个四边形相似,∴,解得,即该四边形的最大边长为.故选C.【考点】本题考查了相似多边形的性质,牢记“相似多边形对应边的比相等”是解题的关键.4、C【解析】【分析】根据相似三角形的判定定理、正弦、余弦的概念解答.【详解】三角形各边长度都扩大为原来的3倍,∴得到的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的正弦、余弦值不变,故选:C.【考点】三角形的形状没有改变,边的比值没有发生变化.5、D【解析】【分析】通过△ABD∽△DCE,可得,即可求解.【详解】解:∵△ABC是等边三角形,∴AB=BC=9,∠ABC=∠ACB=60°,∵BD=3,∴CD=6,∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,∴∠BAD=∠CDE,∴△ABD∽△DCE,∴,∴∴CE=2,故选:D.【考点】本题考查了三角形的相似,做题的关键是△ABD∽△DCE.6、B【解析】【分析】根据比例的性质即可得到结论.【详解】∵=,∴可设a=2k,b=3k,∴==-.故选B.【考点】本题主要考查了比例的性质,解本题的要点根据题意可设a,b的值,从而求出答案.二、多选题1、AB【解析】【分析】连接OD,可证明△ODE是等边三角形,所以A,B正确;通过举反例:当重合,时,可得:<可得C不一定成立,根据切线的定义,可得D不正确,从而可得答案.【详解】解:连接OD,∵∠A=60°∴∠B+∠C=120°,的度数为∵的度数为∴的度数为∴∠DOE=60°,又OD=OE,∴△ODE是等边三角形,即所以A正确,符合题意;则D到OE的长度是等边△ODE的高,而等边的边长等于圆的半径,则高一定是一个定值,因而B正确,符合题意;如图:当重合,时,则为的切线,同理可得:此时则为的直径,>此时<所以C不符合题意;与的外接圆有两个交点,不是外接圆的切线,所以D不符合题意;故选:AB.【考点】本题考查的是圆的基本性质,圆弧的度数与其所对的圆周角的度数之间的关系,切线的概念的理解,等边三角形的判定与性质,灵活运用以上知识解题是解题的关键.2、ABD【解析】【分析】根据三角形相似的判断方法判断即可.【详解】解:A、∵∠AED=∠ABC,∠A=∠A,∴△AED∽△ABC,符合题意;B、∵∠ADE=∠AC,∠A=∠A,∴△AED∽△ABC,符合题意;C、,不能判定△AED∽△ABC,不符合题意;D、∵,∠A=∠A,∴△AED∽△ABC,符合题意.故选:ABD.【考点】此题考查了三角形相似的判断方法,解题的关键是熟练掌握三角形相似的判定方法.3、ABD【解析】【分析】先根据同角的余角相等得出∠G=∠EFH,再根据三角函数的定义求解即可.【详解】解:∵在△EFG中,∠EFG=90°,FH⊥EG,∴∠E+∠G=90°,∠E+∠EFH=90°,∴∠EFH=∠G,∴sinG=sin∠EFH=.所以选项A、B、D都是正确的,故选:ABD.【考点】本题利用了同角的余角相等和锐角三角函数的定义解答,属较简单题目.4、ABC【解析】【分析】先根据勾股定理求出AC=,再根据三角函数的定义分别求解可得.【详解】解:A、sinA=,故该选项符合题意;B、tanA=,故该选项符合题意;C、cosB=,故该选项符合题意;D、tanB==,故该选项不符合题意;故选:ABC.【考点】本题主要考查了锐角三角函数,正确记忆相关比例关系是解题关键.5、ABC【解析】【分析】根据相似图形的定义,对选项进行一一分析,排除错误答案.【详解】解:A、形状相同,但大小不同,符合相似形的定义,故符合题意;B、形状相同,但大小不同,符合相似形的定义,故符合题意;C、形状相同,但大小不同,符合相似形的定义,故符合题意;D、形状不相同,不符合相似形的定义,故不符合题意;故选:ABC.【考点】本题考查的是相似形的定义,结合图形,即图形的形状相同,但大小不一定相同的变换是相似变换.6、AC【解析】【分析】根据题意及图象先确定反比例函数解析式及正比例函数解析式,然后根据题意对各选项进行判断即可.【详解】解:A、药物释放完毕后,y与t成反比例,设,由图象可得经过点,∴k=3×,∴,当y=1时,t=,∴正比例函数经过点,设正比例函数解析式为y=at,将点代入求得:a=,∴正比例函数解析式为y=t,故A正确;B、由A选项可得,当t=时,y达到最大为1,故B错误;C、当t=6时,代入反比例函数可得:,∴6h后空气中的含药量低于0.25mg/m3,故C正确;D、根据图象及C选项可得:空气中含药量不低于0.25mg/m3的时长小于6h,故D错误;故选:AC.【考点】题目主要考查一次函数与反比例函数的综合应用,理解题意,确定出一次函数与反比例函数解析式是解题关键.7、ACD【解析】【分析】可以选择特殊值代入,进行分析.【详解】解:A中,如α=30°,β=60°时,而sin(α+β)=sin90°=1,sin30°+sin60°=,显然错误,符合题意;B中,根据cos60°=,正确,不符合题意;C中,如α=60°,β=30°时,而cos60°=,cos30°=,显然错误,符合题意;D中,如cos30°>sin45°,错误,符合题意.故选:ACD.【考点】本题考查了特殊角的三角函数值,记忆特殊角的三角函数值是解题的关键.三、填空题1、3【解析】【分析】根据二次函数的定义:一般地,形如(a、b、c是常数且a≠0)的函数叫做二次函数,进行求解即可.【详解】解:∵抛物线是二次函数,∴,∴,故答案为:3.【考点】本题主要考查了二次函数的定义,解题的关键在于能够熟知二次函数的定义.2、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案为:2019.【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.3、【解析】【分析】连结OG,如图,根据勾股定理得到BC=4,根据平移的性质得到CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,根据切线的性质得到OD⊥A1B1,根据相似三角形的性质即可得到结论.【详解】连结OG,如图,∵∠BAC=90°,AB=5,AC=3,∴BC==4,∵Rt△ABC沿射线CB方向平移,当A1B1与半圆O相切于点D,得△A1B1C1,∴CC1=BB1,A1C1=AC=3,A1B1=AB=5,∠A1C1B1=∠ACB=90°,∵A1B1与半圆O相切于点D,∴OD⊥A1B1,∵BC=4,线段BC为半圆O的直径,∴OB=OC=2,∵∠GEO=∠DEF,∴Rt△B1OD∽Rt△B1A1C1,∴,即,解得OB1=,∴BB1=OB1﹣OB=﹣2=,故答案为.【考点】本题考查了切线的性质,平移的性质、勾股定理和相似三角形的判定与性质,熟练掌握相关性质是解题的关键.4、8【解析】【分析】二次函数的顶点式在x=h时有最值,a>0时有最小值,a<0时有最大值,题中函数,故其在时有最大值.【详解】解:∵,∴有最大值,当时,有最大值8.故答案为8.【考点】本题考查了二次函数顶点式求最值,熟练掌握二次函数的表达式及最值的确定方法是解题的关键.5、<【解析】【分析】把点A(3,a),B(-1,b)代入函数上求出a、b的值,再进行比较即可.【详解】把点A(3,a)代入函数可得,a=-1;把点B(-1,b)代入函数可得,b=3;∵3>-1,即a<b.故答案为:<.【考点】本题比较简单,考查了反比例函数图象上点的坐标特点,即反比例函数图象上点的坐标一定适合此函数的解析式.6、【解析】【分析】由,根据圆周角定理得出,根据S阴影=S扇形AOB-可得出结论.【详解】解:∵,∴,∴S阴影=S扇形AOB-,故答案为:.【考点】本题主要考查圆周角定理、扇形的面积计算,根据题意求得三角形与扇形的面积是解答此题的关键.7、【解析】【分析】由“滋生函数”和“本源函数”的定义,运用待定系数法求出函数的本源函数.【详解】解:由题意得解得∴函数的本源函数是.故答案为:.【考点】本题考查新定义运算下的一次函数和二次函数的应用,解题关键是充分理解新定义“本源函数”.四、解答题1、(1);(2)【解析】【分析】(1)利用配方法求解即可;(2)原式利用特殊角的三角函数值,以及零指数幂、负整数指数幂法则计算即可求出值.【详解】解:(1)原式整理得∴∴;(2)原式=【考点】本题考查了一元二次方程的求解与三角函数的求解,熟练掌握运算法则,特殊角的三角函数是解本题的关键.2、(1)见解析;(2)圆周角定理;,圆周角定理的推论【解析】【分析】(1)利用几何语言画出对应的几何图形;(2)先根据圆周角定理得到,再利用等腰三角形的性质得到,从而得到.【详解】解:(1)如图,为所作;(2)证明:连接,如图,,点在上.点在上,(圆周角定理),,(圆周角定理的推论).故答案为:圆周角定理;;圆周角定理的推论.【考点】本题考查了作图复杂作图、也考查了圆周角定理,解题的关键是掌握复杂作图的五种基本作图的基本方法,一般是结合了几何图形的性质和基本作图方法.熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.3、(1)x=3;(2)4【解析】【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)原式利用零指数幂、负整数指数幂法则,以及绝对值的代数意义计算即可求出值.【详解】解:(1)方程两边同乘以(x+2)(x﹣2),得(x﹣2)2+4=x2﹣4,解得:x=3,检验:当x=3时,(x+2)(x﹣2)=5≠0,则x=3是原分式方程的解;(2)原式=3﹣1+2=4.【考点】本题考查解分式方程,实数的运算.涉及零指数幂,负整数指数幂以及绝对值的代数意义计算,注意解分式方程一定要验根.4、【解析】【分析】首先代入特殊角的三角函数值,再进行二次根式的运算即可求得.【详解】解:.【考点】本题考查了含特殊角的三角形函数值的混合运算,熟练掌握特殊角的三角形函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025工业品买卖合同范本下载
- 2025技术开发委托合同模板
- 多学科诊疗实践探索
- 专师资培训课件
- 专家医生科普知识培训课件
- 2026届山东省济宁市田家炳中学七年级数学第一学期期末学业质量监测模拟试题含解析
- 2026届安徽省合肥市滨湖区寿春中学九年级数学第一学期期末质量检测模拟试题含解析
- 汽车行业从业者职业发展路径解析
- 山东省安丘市东埠中学2026届数学八年级第一学期期末质量跟踪监视试题含解析
- 2025合同模板股权众筹项目委托融资合同
- 2025年广东省公务员录用考试《行测》真题及答案解析
- 2026步步高六册同步物理必修3-章末检测试卷(三)
- 兴东线泰州段航道整治工程环评资料环境影响
- 踝关节超声检查
- 【成都】2025年四川成都高新区“蓉漂人才荟”招聘事业单位工作人员10人笔试历年典型考题及考点剖析附带答案详解
- 冠脉介入培训心得体会
- 中医高血压糖尿病课件
- 美容科规章制度
- 初中数学问题解决策略 特殊化教案2024-2025学年北师大版(2024)七年级数学下册
- 钢卷储存及装卸安全管理办法
- 患者发生静脉炎应急演练方案
评论
0/150
提交评论