




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
京改版数学9年级上册期中试题考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题26分)一、单选题(6小题,每小题2分,共计12分)1、已知二次函数y=ax2+bx+c,其中a<0,若函数图象与x轴的两个交点均在负半轴,则下列判断错误的是(
)A.abc<0 B.b>0 C.c<0 D.b+c<02、如图,在RtABC中,∠C=90°,AC=3cm,BC=4cm,D从A出发沿AC方向以1cm/s向终点C匀速运动,过点D作DEAB交BC于点E,过点E作EF⊥BC交AB于点F,当四边形ADEF为菱形时,点D运动的时间为()sA. B. C. D.3、对于函数的图象,下列说法不正确的是(
)A.开口向下 B.对称轴是直线C.最大值为 D.与轴不相交4、如图,已知动点,分别在轴,轴正半轴上,动点在反比例函数图象上,轴,当点的横坐标逐渐增大时,的面积将会()A.越来越小 B.越来越大C.不变 D.先变大后变小5、对于反比例函数y=﹣,下列说法错误的是()A.图象经过点(1,﹣5)B.图象位于第二、第四象限C.当x<0时,y随x的增大而减小D.当x>0时,y随x的增大而增大6、如图,直线与双曲线交于两点,则当线段的长度取最小值时,的值为(
)A. B. C. D.二、多选题(7小题,每小题2分,共计14分)1、如图,抛物线过点,对称轴是直线.下列结论正确的是(
)A.B.C.若关于x的方程有实数根,则D.若和是抛物线上的两点,则当时,2、如果α、β都是锐角,下面式子中不正确的是(
)A.sin(α+β)=sinα+sinβ B.cos(α+β)=时,α+β=60°C.若α≥β时,则cosα≥cosβ D.若cosα>sinβ,则α+β>90°3、若二次函数(a是不为0的常数)的图象与x轴交于A、B两点.则以下结论正确的有(
)A.B.当时,y随x的增大而增大C.无论a取任何不为0的数,该函数的图象必经过定点D.若线段AB上有且只有5个横坐标为整数的点,则a的取值范围是4、在反比例函数y=的图象中,阴影部分的面积等于4的是()A. B.C. D.5、在Rt△ABC中,∠C=90°,当已知∠A和a时,求c,不能选择的关系式是(
)A.c= B.c= C.c=a·tanA D.c=6、在Rt△ABC中,∠C=90°,下列式子一定成立的是(
)A.sinA=sinB B.cosA=sinB C.sinA=cosB D.∠A+∠B=90°7、如图,在△ABC中,点D、E分别在边AB、AC上,且BD=2AD,CE=2AE,则下列结论中成立的是()A.△ABC∽△ADE B.DE∥BCC.DE:BC=1:2 D.S△ABC=9S△ADE第Ⅱ卷(非选择题74分)三、填空题(7小题,每小题2分,共计14分)1、在Rt△ABC中,∠C=90°,AC=5,AB=10,则∠B=_____.2、已知抛物线与x轴的一个交点为,则代数式的值为______.3、如图是抛物线型拱桥,当拱顶离水面2m时,水面宽4m,水面下降2m,水面宽度增加______m.4、如图,在矩形ABCD中,E,F为边AD上两点,将矩形ABCD沿BE折叠,点A恰好落在BF上的A'处,且A′E=A'F,再将矩形ABCD沿过点B的直线折叠,使点C落在BF上的C'处,折痕交CD于点H,将矩形ABCD再沿FH折叠,D与C'恰好重合.已知AE=,则AD=_____.5、如图,已知P是函数y1图象上的动点,当点P在x轴上方时,作PH⊥x轴于点H,连接PO.小华用几何画板软件对PO,PH的数量关系进行了探讨,发现PO﹣PH是个定值,则这个定值为_____.6、如图,在平面直角坐标系中,点A在抛物线y=x2﹣2x+2上运动.过点A作AC⊥x轴于点C,以AC为对角线作矩形ABCD,连接BD,则对角线BD的最小值为_____.7、已知二次函数,当分别取时,函数值相等,则当取时,函数值为______.四、解答题(6小题,每小题10分,共计60分)1、如图,在平面直角坐标系的第一象限中,有一点A(1,2),AB∥x轴且AB=6,点C在线段AB的垂直平分线上,且AC=5,将抛物线y=ax2(a>0)的对称轴右侧的图象记作G.(1)若G经过C点,求抛物线的解析式;(2)若G与△ABC有交点.①求a的取值范围;②当0<y≤8时,双曲线经过G上一点,求k的最大值.2、某公司计划购进一批原料加工销售,已知该原料的进价为6.2万元/t,加工过程中原料的质量有20%的损耗,加工费m(万元)与原料的质量x(t)之间的关系为m=50+0.2x,销售价y(万元/t)与原料的质量x(t)之间的关系如图所示.(1)求y与x之间的函数关系式;(2)设销售收入为P(万元),求P与x之间的函数关系式;(3)原料的质量x为多少吨时,所获销售利润最大,最大销售利润是多少万元?(销售利润=销售收入﹣总支出).3、如图,抛物线与轴交于两点和,与轴交于点C,连接、.(1)求抛物线的解析式;(2)点M在线段上(与A、B不重合),点N在线段上(与B、C不重合),是否存在以C,M,N为顶点的三角形与△ABC相似,若存在,请求出点N的坐标;若不存在,请说明理由.4、如图,在△ABC中,D,E分别是AC,AB上的点,∠ADE=∠B.△ABC的角平分线AF交DE于点G,交BC于点F.(1)求证:△ADG∽△ABF;(2)若,AF=6,求GF的长.5、如图,二次函数的图象交轴于、两点,交轴于点,点的坐标为,顶点的坐标为.求二次函数的解析式和直线的解析式;点是直线上的一个动点,过点作轴的垂线,交抛物线于点,当点在第一象限时,求线段长度的最大值;在抛物线上是否存在异于、的点,使中边上的高为?若存在求出点的坐标;若不存在请说明理由.6、如图,已知二次函数的图象经过点.(1)求的值和图象的顶点坐标.
(2)点在该二次函数图象上.
①当时,求的值;②若到轴的距离小于2,请根据图象直接写出的取值范围.-参考答案-一、单选题1、B【解析】【分析】根据函数图象与x轴的两个交点均在负半轴,可得抛物线的对称轴与x轴负半轴相交,可以判断a,b,c的符号,进而可得结论.【详解】解:因为函数图象与x轴的两个交点均在负半轴,所以抛物线的对称轴与x轴负半轴相交,所以﹣<0,c<0,因为a<0,所以b<0,因为c<0,所以abc<0,b+c<0,故选:B.【考点】本题考查了二次函数图象与系数的关系,解决本题的关键是掌握二次函数图象与系数的关系.2、D【解析】【分析】由勾股定理可求AB的长,由锐角三角函数可得,即可求解.【详解】解:设经过t秒后,四边形ADEF是菱形,∴AD=DE=t,DE∥AB,∴CD=(3-t)(cm),∠ABC=∠DEC,∵∠C=90°,AC=3cm,BC=4cm,∴(cm),∵sin∠DEC=sin∠ABC=,∴,∴,故选:D.【考点】本题考查了菱形的性质,勾股定理,锐角三角函数等知识,灵活运用这些性质解决问题是本题的关键.3、D【解析】【分析】根据二次函数的性质,进行判断,即可得到答案.【详解】解:∵,则开口向下,故A正确;对称轴是直线,故B正确;当,y有最大值k,故C正确;当,,与y轴肯定有交点,故D错误;故选择:D.【考点】本题考查了二次函数的性质,解题的关键是熟记二次函数的性质.4、C【解析】【分析】设点,作可得,根据可得答案.【详解】解:如图,过点作于点,则,设点,则,当点的横坐标逐渐增大时,的面积将会不变,始终等于,故选:.【考点】本题主要考查反比例函数系数的几何意义,熟练掌握在反比例函数的图象上任意一点向坐标轴作垂线,这一点和垂足以及坐标原点所构成的三角形的面积是,且保持不变.5、C【解析】【分析】根据题目中的函数解析式和反比例函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:反比例函数y=﹣,A、当x=1时,y=﹣=﹣5,图像经过点(1,-5),故选项A不符合题意;B、∵k=﹣5<0,故该函数图象位于第二、四象限,故选项B不符合题意;C、当x<0时,y随x的增大而增大,故选项C符合题意;D、当x>0时,y随x的增大而增大,故选项D不符合题意;故选C.【考点】本题考查的是反比例函数的性质,熟练掌握反比例函数的性质是解题的关键.6、C【解析】【分析】当直线经过原点时,线段AB的长度取最小值,依此可得关于的方程,解方程即可求得的值.【详解】∵根据反比例函数的对称性可知,要使线段AB的长度取最小值,则直线经过原点,∴,解得:.故选:C.【考点】考查了反比例函数与一次函数的交点问题,本题的关键是理解当直线经过原点时,线段AB的长度取最小值.二、多选题1、D【解析】【详解】解:A.∵抛物线开口向下,∴a<0,∵对称轴在y轴左侧,∴a、b同号,∴b<0,∵抛物线与y轴交点在正半轴上,∴c>0,∴abc>0,故此选项不符合题意;B.∵(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b),∵抛物线过点,对称轴是直线,∴抛物线与x轴另一交点为(2,0),∴当x=2时,y=ax2+bx+c=4a+c+2b=0,∴(4a+c)2-(2b)2=(4a+c+2b)(4a+c-2b)=0,∴(4a+c)2=4b2,故此选项不符合题意;C.∵-=-1,∴b=2a,∵当x=2时,y=ax2+bx+c=4a+c+2b=0,∴4a+c+4a=0,∴c=-8a,∵关于x的方程有实数根,∴Δ=b2-4a(c-m)≥0,∴(2a)2-4a(-8a-m)≥0,∵a<0,∴9a+m≤0,故此选项不符合题意;D.∵|x1+1|=|x1-(-1)|,|x2+1|=|x2-(-1)|,又∵|x1+1|>|x2+1|,∴点(x1,y1)到对称轴的距离大于点(x2,y2)到对称轴的距离,∴y1<y2,故此选项符合题意;故选:D.【考点】本题考查二次函数图象与系数的关系,二次函数的性质,二次函数与一元二次方程的联系,熟练掌握二次函数图象性质是解题的关键.2、ACD【解析】【分析】可以选择特殊值代入,进行分析.【详解】解:A中,如α=30°,β=60°时,而sin(α+β)=sin90°=1,sin30°+sin60°=,显然错误,符合题意;B中,根据cos60°=,正确,不符合题意;C中,如α=60°,β=30°时,而cos60°=,cos30°=,显然错误,符合题意;D中,如cos30°>sin45°,错误,符合题意.故选:ACD.【考点】本题考查了特殊角的三角函数值,记忆特殊角的三角函数值是解题的关键.3、ACD【解析】【分析】求得顶点坐标,根据题意即可判断①正确;根据二次函数的性质即可判断②错误;二次函数是不为0的常数)的顶点,即可判断③错误;根据题意时,时,即可判断④正确.【详解】解:二次函数,顶点为,在轴的下方,∵函数的图象与轴交于、两点,抛物线开口向上,,故①正确;时,随的增大而增大,故②错误;由题意可知当,二次函数是不为0的常数)的图象一定经过点,故③正确;线段上有且只有5个横坐标为整数的点,且对称轴为直线,∴当时,,当时,,,解得,故④正确;故选:ACD.【考点】本题考查了二次函数的性质,二次函数图象与系数的关系,二次函数图象上点的坐标特征,能够理解题意,利用二次函数的性质解答是解题的关键.4、ACD【解析】【分析】根据反比例函数y=中k的几何意义,过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|解答即可.【详解】解:A、阴影图形面积为|k|=4;B、阴影是梯形,面积大于4;C、D阴影图形面积均为两个三角形面积之和,为2×(|k|)=4.故选:ACD.【考点】主要考查了反比例函数y=中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的关系即S=|k|.5、BCD【解析】【分析】在Rt△ABC中,∠C=90°,sinA=变形可判断A,在Rt△ABC中,∠C=90°,由cosA=和tanA=,可得可判断B、D,在Rt△ABC中,∠C=90°,由tanA=,可得,由勾股定理c=,可判断C.【详解】解:在Rt△ABC中,∠C=90°,∵sinA=,∴c=,故选项A正确;在Rt△ABC中,∠C=90°,∵cosA=∴∵tanA=∴∴故选项B不正确;在Rt△ABC中,∠C=90°,∵tanA=∴∴c=故选项C不正确在Rt△ABC中,∠C=90°,∵tanA=∴∵cosA=∴∴故选项D不正确;不能选择的关系式是BCD.故选择BCD.【考点】本题主要考查解三角形,勾股定理,解题的关键是熟练运用三角函数的定义求解.6、BCD【解析】【分析】根据互为余角的三角函数关系,可判断A、B、C;根据直角三角形的性质,可判断D.【详解】解:∵∠C=90°,∴∠A+∠B=90°,A、A≠B时,sinA≠sinB,故A错误;B、∵∠A+∠B=90°,∴cosA=sinB,故B正确;C、∵∠A+∠B=90°,∴sinA=cosB,故C正确;D、∵∠C=90°,∴∠A+∠B=90°,故D正确;故选:BCD.【考点】本题考查了互余两角三角函数的关系,熟记同角(或余角)的三角函数关系式是解题的关键.7、ABD【解析】【分析】由已知条件易证DE∥BC,则△ABC∽△ADE,再由相似三角形的性质即可得到问题的选项.【详解】解:∵BD=2AD,CE=2AE,∴,∴DE∥BC,故B正确;∴△ABC∽△ADE,故A正确;∴DE:BC=AD:AB=1:3,故C错误;∴S△ABC=9S△ADE故D正确,∴其中成立的jABD,故选ABD.【考点】本题考查了平行四边形的性质以及相似三角形的判定和性质,证明DE∥BC是解题的关键.三、填空题1、60°【解析】【分析】利用正弦定义计算即可.【详解】解:如图,∵sinB=,∴∠B=60°,故答案为:60°.【考点】此题主要考查了解直角三角形,关键是掌握正弦定义.2、2019【解析】【分析】先将点(m,0)代入函数解析式,然后求代数式的值即可得出结果.【详解】解:将(m,0)代入函数解析式得,m2-m-1=0,∴m2-m=1,∴-3m2+3m+2022=-3(m2-m)+2022=-3+2022=2019.故答案为:2019.【考点】本题考查了二次函数图象上点的坐标特征及求代数式的值,解题的关键是将点(m,0)代入函数解析式得到有关m的代数式的值.3、【解析】【分析】根据已知建立平面直角坐标系,进而求出二次函数解析式,再通过把代入抛物线解析式得出水面宽度,即可得出答案.【详解】建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为通过以上条件可设顶点式,其中可通过代入A点坐标代入到抛物线解析式得出:所以抛物线解析式为当水面下降2米,通过抛物线在图上的观察可转化为:当时,对应的抛物线上两点之间的距离,也就是直线与抛物线相交的两点之间的距离,可以通过把代入抛物线解析式得出:解得:
所以水面宽度增加到米,比原先的宽度当然是增加了故答案是:【考点】考查了二次函数的应用,根据已知建立坐标系从而得出二次函数解析式是解决问题的关键.4、【解析】【分析】由折叠的性质得出△A'EF为等腰直角三角形,得出EF=A'E=2,∠EFC'=45°,求出AF=AE+EF=+2,证明△ABF为等腰直角三角形,求出AB的长,证明△FDH∽△EAB,由相似三角形的性质得出,求出DF的长,则可得出答案.【详解】解:∵AE=A'E,∴A'E=,∵A'E=A'F,∠EA'B=∠EAB=90°,∴△A'EF为等腰直角三角形,∴EF=A'E=2,∠EFC'=45°,∴AF=AE+EF=+2,△ABF为等腰直角三角形,∴AB=AF=+2,∠ABF=45°,∴∠ABE=∠HBF=22.5°,∴∠AEB=67.5°,∵将矩形ABCD再沿FH折叠,D与C'恰好重合,∴∠C'FH=∠DFH=67.5°,∴∠AEB=∠DFH,又∵∠A=∠D,∴△FDH∽△EAB,∴,∵DH=C'H=CH,∴DH=∴DF=AE=,∴AD=AE+EF+DF=+2.故答案为:+2.【考点】本题考查了三角形相似的判定与性质,折叠的性质,矩形的性质,熟练掌握折叠的性质是解题的关键.5、2【解析】【分析】设p(x,x2-1),则OH=|x|,PH=|x2-1|,因点P在x轴上方,所以x2-1>0,由勾股定理求得OP=x2+1,即可求得OP-PH=2,得出答案.【详解】解:设p(x,x2-1),则OH=|x|,PH=|x2-1|,当点P在x轴上方时,∴x2-1>0,∴PH=|x2-1|=x2-1,在Rt△OHP中,由勾股定理,得OP2=OH2+PH2=x2+(x2-1)2=(x2+1)2,∴OP=x2+1,∴OP-PH=(x2+1)-(x2-1)=2,故答案为:2.【考点】本题考查二次函数图象上点的坐标特征,勾股定理,利用坐标求线段长度是解题的关键.6、1【解析】【分析】由矩形的性质可知BD=AC,再结合顶点到x轴的距离最近可知当点A在顶点处时满足条件,求得抛物线的顶点坐标即可求得答案.【详解】解:∵AC⊥x轴,∴当点A为抛物线顶点时,AC有最小值,∵抛物线y=x2﹣2x+2=(x−1)2+1,∴顶点坐标为(1,1),∴AC的最小值为1,∵四边形ABCD为矩形,∴BD=AC,∴BD的最小值为1,故答案为:1.【考点】本题主要考查了二次函数的性质及矩形的性质,确定出AC最小时的位置是解题的关键.7、2020【解析】【分析】根据二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,可以得到x1和x2的关系,从而可以得到2x1+2x2的值,进而可以求得当x取2x1+2x2时,函数的值.【详解】解:∵二次函数y=2x2+2020,当x分别取x1,x2(x1≠x2)时,函数值相等,∴2x12+2020=2x22+2020,∴x1=-x2,∴2x1+2x2=2(x1+x2)=0,∴当x=2x1+2x2时,y=2×0+2020=0+2020=2020,故答案为:2020.【考点】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.四、解答题1、(1);(2)①,②k的最大值为112.【解析】【分析】(1)如图1中,作CH⊥AB于H.求出点C坐标即可解决问题;(2)①当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,可得a=,由此即可解决问题;②由题意当a=时,y=x2,当y=8时,8=x2,因为x>0,推出x=14,由题意当反比例函数y=经过点(14,8)时k的值最大;【详解】解:(1)如图1中,作CH⊥AB于H.∵CA=CB=5,CH⊥AB,∴AH=HB=3,在Rt△ACH中,CH==4,∴C(4,6),∵抛物线y=ax2(a>0)经过C点,∴6=16a,∴a=,∴抛物线的解析式为y=x2.(2)①∵A(1,2),B(7,2),当抛物线经过点A时,a=2,当抛物线经过点B时,2=49a,∴a=,∵若G与△ABC有交点,∴≤a≤2.②由题意当a=时,y=x2,当y=8时,8=x2,∴x>0,∴x=14,∴当反比例函数y=经过点(14,8)时k的值最大,此时k=112,∴k的最大值为112.【考点】本题考查二次函数综合题、待定系数法、勾股定理等知识,解题的关键是理解题意,学会利用特殊点解决问题,属于中考压轴题.2、(1);(2);(3)原料的质量为24吨时,所获销售利润最大,最大销售利润是万元【解析】【分析】(1)利用待定系数法求函数关系式;(2)根据销售收入=销售价×销售量列出函数关系式;(3)设销售总利润为W,根据销售利润=销售收入﹣原料成本﹣加工费列出函数关系式,然后根据二次函数的性质分析其最值.【详解】解:(1)设y与x之间的函数关系式为,将(20,15),(30,12.5)代入,可得:,解得:,∴y与x之间的函数关系式为;(2)设销售收入为P(万元),∴,∴P与x之间的函数关系式为;(3)设销售总利润为W,∴,整理,可得:,∵﹣<0,∴当时,W有最大值为,∴原料的质量为24吨时,所获销售利润最大,最大销售利润是万元.【考点】本题考查了二次函数的实际应用,涉及了数形结合的数学思想,熟练掌握待定系数法求解析式是解决本题的关键.3、(1);(2)存在,点N的坐标为:或或【解析】【分析】(1)将点A、B的坐标代入抛物线表达式,即可求解;(2)分为直角、为直角、为直角两种情况,利用三角形相似求解即可.【详解】解:(1)点,在抛物线上,,解得,抛物线的解析式为:;(2)存在,理由:点C的坐标为(0,2)由点A、B、C的坐标得,,,,则,故为以为斜边的直角三角形,;以C,M,N为顶点的三角形与△ABC相似,则为直角三角形,由点B、C的坐标得,直线的表达式为,点N在上,故设点,设点;①当为直角时,此时点M与点A重合,不符合题意,②当为直角时,如图1,过点N作轴于点G,,,,,当时,,∴,∴的相似比为,则,,即且,解得:,故点N的坐标为;当时,同理可得:(舍去);③当为直角时,如图2,过点N作轴的垂线,垂足为点H,过点C作交的延长线于点G,当时,同理可得:且相似比为,则,即,解得:,故点N的坐标为;当时,则,而,则点N是的中点,由中点公式得,点;综上,点N的坐标为:或或.【考点】本题考查的是二次函数综合运用,涉及到一次
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 口腔疾病风险预测-洞察及研究
- 广东省梅州市兴宁市实验学校、宁江中学2025届九年级下学期中考三模道德与法治试卷(含答案)
- 2024-2025学年广西柳州市城中区人教版三年级下册期末考试数学试卷(含答案)
- 西师大版数学六年级上册第八单元测试卷(B)(含解析)
- 边河安全培训基地课件
- 边城课件教学
- 基于拓扑优化的凸轮轮廓面接触应力分布与疲劳寿命提升路径研究
- 地暖场景下分体式空调热辐射效率的跨模态研究
- 后疫情时代一次性医疗用品需求激增与资源可持续性的博弈平衡
- 可降解材料产业化进程中碳足迹核算的技术瓶颈
- 半导体数字集成电路测试技术概要
- 公共政策分析陈庆云
- 螺杆式冷水机组招标技术要求
- 小区道路维修施工方案(全面完整版)
- 心包积液以及心包填塞
- 商业银行内部审计技术与方法
- 机电传动控制-电力电子技术1
- 化粪池土方开挖施工方案
- 论信息技术对公共行政的影响分析研究行政管理专业
- 蒂斯——动态能力与战略管理中译版
- 沥青搅拌设备项目说明(参考模板)
评论
0/150
提交评论