难点解析北师大版9年级数学上册期中试卷及完整答案详解(考点梳理)_第1页
难点解析北师大版9年级数学上册期中试卷及完整答案详解(考点梳理)_第2页
难点解析北师大版9年级数学上册期中试卷及完整答案详解(考点梳理)_第3页
难点解析北师大版9年级数学上册期中试卷及完整答案详解(考点梳理)_第4页
难点解析北师大版9年级数学上册期中试卷及完整答案详解(考点梳理)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北师大版9年级数学上册期中试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(7小题,每小题2分,共计14分)1、如图,将图1中的菱形纸片沿对角线剪成4个直角三角形,拼成如图2的四边形(相邻纸片之间不重叠,无缝隙).若四边形的面积为13,中间空白处的四边形的面积为1,直角三角形的两条直角边分别为和,则(

)A.12 B.13 C.24 D.252、我们知道,四边形具有不稳定性,如图,在平面直角坐标系中,边长为2的正方形的边在x轴上,的中点是坐标原点O,固定点A,B,把正方形沿箭头方向推,使点D落在y轴正半轴上点处,则点C的对应点的坐标为(

)A. B. C. D.3、用配方法解方程时,原方程应变形为(

)A. B. C. D.4、某校八年级组织一次篮球赛,各班均组队参赛,赛制为单循环形式(每两班之间都赛一场),共需安排15场比赛,则八年级班级的个数为(

)A.5 B.6 C.7 D.85、若m,n是方程x2-x-2022=0的两个根,则代数式(m2-2m-2022)(-n2+2n+2022)的值为(

)A.2023 B.2022 C.2021 D.20206、小颖有两顶帽子,分别为红色和黑色,有三条围巾,分别为红色、黑色和白色,她随机拿出一顶帽子和一条围巾戴上,恰好为红色帽子和红色围巾的概率是(

)A. B. C. D.7、扬帆中学有一块长,宽的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为,则可列方程为()A. B.C. D.二、多选题(3小题,每小题2分,共计6分)1、等腰三角形三边长分别为a,b,3,且a,b是关于x的一元二次方程x2﹣8x﹣1+m=0的两根,则m的值为()A.15 B.16 C.17 D.182、下列方程没有实数根的是(

)A. B. C. D.3、若是方程的一个根,则的值是(

)A.1 B. C.3 D.第Ⅱ卷(非选择题80分)三、填空题(10小题,每小题2分,共计20分)1、如图,将正方形OEFG放在平面直角坐标系中,O是坐标原点,点E的坐标为(2,3),则点F的坐标为_____.2、如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH.若OB=4,S菱形ABCD=24,则OH的长为______________.3、在四边形ABCD中,ABCD,ADBC,添加一个条件________,即可判定该四边形是菱形.4、如图,正方形ABCD的边长为6,点E在边CD上.以点A为中心,把△ADE顺时针旋转90°至△ABF的位置.若DE=2,则FE=___.5、如图,将矩形的四个角向内折起,恰好拼成一个无缝隙重叠的四边形,若,,则边的长是____.6、有一架竖直靠在直角墙面的梯子正在下滑,一只猫紧紧盯住位于梯子正中间的老鼠,等待与老鼠距离最小时扑捉.把墙面、梯子、猫和老鼠都理想化为同一平面内的线或点,模型如图,,点,分别在射线,上,长度始终保持不变,,为的中点,点到,的距离分别为4和2.在此滑动过程中,猫与老鼠的距离的最小值为_________.7、如图,中,对角线AC,BD相交于点O,添加一个条件,能使成为菱形.你添加的条件是__________(不再添加辅助线和字母)8、如图,在Rt△ABC中,∠C=90°,AC=8cm,BC=2cm,点P在边AC上,以2cm/s的速度从点A向点C移动,点Q在边CB上,以1cm/s的速度从点C向点B移动.点P、Q同时出发,且当一点移动到终点时,另一点也随之停止,连接PQ,当△PQC的面积为3cm2时,P、Q运动的时间是_____秒.9、如图,Rt△ABC中,∠ACB=90°,AB=6,D是AB的中点,则CD=_____.10、如图,在长方形中,,在上存在一点、沿直线把折叠,使点恰好落在边上的点处,若,那么的长为________.四、解答题(6小题,每小题10分,共计60分)1、某旅游园区对团队入园购票规定:如团队人数不超过人,那么这个团队需交200元入园费;若团队人数超过人,则这个团队除了需交200元入园费外,超过部分游客还要按每人元交入园费,下表是两个旅游团队人数和入园缴费情况:旅游团队名称团队人数(人)入园费用(元)旅游团队180350旅游团队245200根据上表的数据,求某旅游园区对团队入园购票规定的人是多少?2、已知:如图,平行四边形ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.3、如图,在菱形ABCD中,对角线AC与BD交于点O.过点C作BD的平行线,过点D作AC的平行线,两直线相交于点E.(1)求证:四边形OCED是矩形;(2)若CE=1,DE=2,ABCD的面积是.4、如图,正方形ABCD的对角线交于点O,点E、F分别在AB、BC上(AE<BE),且∠EOF=90°,OE、DA的延长线交于点M,OF、AB的延长线交于点N,连接MN.(1)求证:OM=ON.(2)若正方形ABCD的边长为4,E为OM的中点,求MN的长.5、已知方程的一个根比另一个根小4,求这两个根和的值.6、已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点到达终点后,另外一点也随之停止运动.(1)如果P、Q分别从A、B同时出发,那么几秒后,△PBQ的面积等于4cm2?(2)在(1)中,△PQB的面积能否等于7cm2?请说明理由.-参考答案-一、单选题1、D【解析】【分析】根据菱形的性质可得对角线互相垂直平分,进而可得4个直角三角形全等,结合已知条件和勾股定理求得,进而根据面积差以及三角形面积公式求得,最后根据完全平方公式即可求得.【详解】菱形的对角线互相垂直平分,个直角三角形全等;,,,四边形是正方形,又正方形的面积为13,正方形的边长为,根据勾股定理,则,中间空白处的四边形的面积为1,个直角三角形的面积为,,,,.故选D.【考点】本题考查了正方形的性质与判定,菱形的性质,勾股定理,完全平方公式,求得是解题的关键.2、D【解析】【分析】由已知条件得到,,根据勾股定理得到,于是得到结论.【详解】解:,,,,,,故选:D.【考点】本题考查了正方形的性质,坐标与图形的性质,勾股定理,正确的识别图形是解题的关键.3、D【解析】【分析】移项,配方,变形后即可得出选项.【详解】解:x2-4x=1,x2-4x+4=1+4,∴(x-2)2=5,故选:D.【考点】本题考查了解一元二次方程,能够正确配方是解此题的关键.4、B【解析】【分析】设有x个班级参加比赛,根据题目中的比赛规则,可得一共进行了场比赛,即可列出方程,求解即可.【详解】解:设有x个班级参加比赛,,,解得:(舍),则共有6个班级参加比赛,故选:B.【考点】本题考查了一元二次方程的应用,解题关键是读懂题意,得到比赛总数的等量关系.5、B【解析】【详解】解:∵m、n是方程x2-x-2022=0的两个根,∴m2-m-2022=0,n2-n-2022=0,mn=-2022,∴m2-m=2022,n2-n=2022,∴(m2-2m-2022)(-n2+2n+2022)=(m2-m-m-2022)(-(n2-n)+n+2022)=(2022-m-2022)((-2022+n+2022)=-mn=2022,故选:B.【考点】本题考查了一元二次方程的解的定义和一元二次方程根与系数的关系,能根据已知条件得出m2-m-2022=0,n2-n-2022=0,mn=-2022是解此题的关键.6、C【解析】【分析】利用列表法或树状图即可解决.【详解】分别用r、b代表红色帽子、黑色帽子,用R、B、W分别代表红色围巾、黑色围巾、白色围巾,列表如下:RBWrrRrBrWbbRbBbW则所有可能的结果数为6种,其中恰好为红色帽子和红色围巾的结果数为1种,根据概率公式,恰好为红色帽子和红色围巾的概率是.故选:C.【考点】本题考查了简单事件的概率,常用列表法或画树状图来求解.7、D【解析】【分析】根据空白区域的面积矩形空地的面积可得.【详解】设花带的宽度为,则可列方程为,故选D.【考点】本题主要考查由实际问题抽象出一元二次方程,解题的关键是根据图形得出面积的相等关系.二、多选题1、BC【解析】【分析】分3为底边长或腰长两种情况考虑:当3为底时,由a=b及a+b=8即可求出a、b的值,利用三角形的三边关系确定此种情况存在,再利用根与系数的关系即可求得的值;当3为腰时,则a、b中有一个为3,a+b=8即可求出b,再利用根与系数的关系即可求得的值.【详解】解:当3为腰时,此时a=3或b=3,把x=3代入方程x2﹣8x﹣1+m=0得9﹣24﹣1+m=0,解得m=16,此时方程为x2﹣8x+15=0,解得x1=3,x2=5;当3为底时,此时a=b,Δ=82﹣4(﹣1+m)=0,解得m=17,此时方程为x2﹣8x+16=0,解得x1=x2=4;综上所述,m的值为16或17.故答案为:BC.【考点】本题考查了一元二次方程根与系数的关系,等腰三角形的定义,分3为底边长或腰长两种情况讨论是解题的关键.2、AD【解析】【分析】判断上述四个方程的根的情况,只要看根的判别式△的值的符号就可以了.【详解】解:、△,方程没有实数根,故本选项符合题意;、△,方程有两个不相等的实数根,故本选不符合题意;、△,方程有两个相等的实数根,故本选项不符合题意;、△,方程没有实数根,故本选项符合题意.故选:AD.【考点】本题考查了根的判别式,解题的关键是掌握一元二次方程的根与△有如下关系:(1)△方程有两个不相等的实数根;(2)△方程有两个相等的实数根;(3)△方程没有实数根.3、AD【解析】【分析】把代入方程中,得到关于的一元二次方程,然后解方程即可.【详解】解:把代入方程中,得:,解得:,,所以的值为1或,故选AD.【考点】本题考查了一元二次方程的解,解题的关键是能得出关于的一元二次方程.三、填空题1、(﹣1,5)【解析】【详解】【分析】结合全等三角形的性质可以求得点G的坐标,再由正方形的中心对称的性质求得点F的坐标.【详解】如图,过点E作x轴的垂线EH,垂足为H.过点G作x轴的垂线GM,垂足为M,连接GE、FO交于点O′,∵四边形OEFG是正方形,∴OG=EO,∠GOM+∠EOH=90°∠GOM=∠OEH,∠OGM=∠EOH,在△OGM与△EOH中,,∴△OGM≌△EOH(ASA),∴GM=OH=2,OM=EH=3,∴G(﹣3,2),∴O′(﹣,),∵点F与点O关于点O′对称,∴点F的坐标为(﹣1,5),故答案是:(﹣1,5).【考点】本题考查了正方形的性质、全等三角形的判定与性质、中点坐标公式等,正确添加辅助线以及熟练掌握和运用相关内容是解题的关键.2、3【解析】【分析】由四边形ABCD是菱形,OB=4,根据菱形的性质可得BD=8,在根据菱形的面积等于两条对角线乘积的一半求得AC=6,再根据直角三角形斜边的中线等于斜边的一半即可求得OH的长.【详解】∵四边形ABCD是菱形,OB=4,∴OA=OC,BD=2OB=8;∵S菱形ABCD=24,∴AC=6;∵AH⊥BC,OA=OC,∴OH=AC=3.故答案为3.【考点】本题考查了菱形的性质及直角三角形斜边的中线等于斜边的一半的性质,根据菱形的面积公式(菱形的面积等于两条对角线乘积的一半)求得AC=6是解题的关键.3、AB=AD(答案不唯一)【解析】【分析】根据平行四边形的判定证出四边形ABCD是平行四边形,根据菱形的判定证出即可.【详解】解:添加的条件是AB=AD.理由如下:∵ABCD,ADBC,∴四边形ABCD是平行四边形,若AB=AD,∴四边形ABCD是菱形.【考点】本题主要考查了菱形的判定、平行四边形的判定等,能根据菱形的判定定理正确地添加条件是解此题的关键.4、【解析】【分析】由旋转的性质可得BF=DE=2,∠D=∠ABF=90°,在直角△EFC中,由勾股定理可求解.【详解】解:∵把△ADE顺时针旋转90°得△ABF,∴BF=DE=2,∠D=∠ABF=90°,∴∠ABC+∠ABF=180°,∴点F,点B,点C共线,在直角△EFC中,EC=6-2=4,CF=BC+BF=8.根据勾股定理得:EF=,故答案为:.【考点】本题考查了旋转的性质,正方形的性质,勾股定理,灵活运用这些性质解决问题是本题的关键.5、【解析】【分析】由折叠的性质和矩形的性质可得∠HEF=90°,EA=EB=3,证明△HNG≌△FME,求出HF,设AH=x,在△AEH,△BEF和△EFH中,利用勾股定理列出方程,求出x,即可得到EH.【详解】解:∵四边形ABCD是矩形,∴∠A=∠B=∠D=90°,由折叠可知:△EAH≌△EMH,△HNG≌△HDG,△FBE≌△FME,∴EA=EM,AH=MH,HD=HN,EB=EM,FB=FM,∠AEH=∠MEH,∠BEF=∠MEF,∠BME=∠B=90°,∠HNG=∠D=90°,∴EA=EB=AB=3,∵∠AEH+∠MEH+∠BEF+∠MEF=180°,∴2∠MEH+2∠MEF=180°,∴∠HEF=90°,同理可知:∠EHG=∠EFG=∠HGF=90°,∴四边形EHGF是矩形,∴HG∥FE,HG=FE,∴∠GHN=∠EFM,在△HNG和△FME中,,∴△HNG≌△FME(AAS),∴HN=FM,∴HD=FM,∴HF=HM+FM=AH+HD=AD=10,设AH=x,则HD=FM=FB=10-x,∵,,,∴,即,解得:x=1或x=9(舍),∴AH=1,∴,故答案为:.【考点】本题考查了翻折变换,矩形的性质,勾股定理,全等三角形的判定和性质,利用勾股定理列出方程是本题的关键.6、【解析】【分析】根据当、、三点共线,距离最小,求出BE和BD即可得出答案.【详解】如图当、、三点共线,距离最小,∵,为的中点,∴,,,故答案为:.【考点】本题考查了直角三角形斜边的中线等于斜边的一半,勾股定理,两点间的距离线段最短,判断出距离最短的情况是解题关键.7、或或或或【解析】【分析】题中实在平行四边形基础上进行菱形的判定,从边、角、对角线三个方面思考:①邻边相等的平行四边形是菱形;②角上面没有;③对角线互相垂直的平行四边形是菱形;相应添加条件即可.【详解】在基础上,从边上添加有四种:①;②;③;④;从对角线上添加有:,故答案为:或或或或.【考点】本题考查菱形的判定,熟练掌握平行四边形及特殊平行四边形的性质,并清楚是在谁的基础上进行判定是解决问题的关键.8、1【解析】【分析】设P、Q运动的时间是秒,根据已知条件得到cm,cm,则cm,根据三角形面积公式列出方程,解方程即可求解.【详解】解:设P、Q运动的时间是秒,则cm,cm,cm∵△PQC的面积为3cm2,∴,即,解得或(不合题意,舍去),∴当△PQC的面积为3cm2时,P、Q运动的时间是1秒.故答案为:1【考点】本题考查了一元二次方程应用——动点问题,三角形的面积,正确的理解题意是解题的关键.9、3【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半解答.【详解】∵∠ACB=90°,D为AB的中点,∴CD=AB=×6=3.故答案为3.【考点】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,熟记性质是解题的关键.10、【解析】【分析】由折叠的性质,得DE=EF,AD=AF,然后求出AF=AD=10,则求出FC的长度,再根据勾股定理建立方程,即可求出答案.【详解】解:∵四边形是长方形,由折叠的性质,,∵,又,在中,;故答案为:.【考点】本题考查了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②矩形的性质,勾股定理求解.四、解答题1、50【解析】【分析】先根据旅游团队1的入园费用等于200元入园费+超出的部分的费用列出方程,解得,,再根据旅游团队2的数据可知a≥45,由此可求得a的值.【详解】解:由题意可得:,解得,,由旅游团队2的数据可知a≥45,∴a=50,答:某旅游园区对团队入园购票规定的人是50人.【考点】本题考查了一元二次方程的应用,理解题意,根据旅游团队1的入园费用等于200元入园费+超出的部分的费用列出方程是解决本题的关键.2、(1)证明见解析;(2)结论:四边形ACDF是矩形.理由见解析【解析】【分析】(1)只要证明AB=CD,AF=CD即可解决问题;(2)结论:四边形ACDF是矩形.根据对角线相等的平行四边形是矩形判断即可;【详解】解:(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG,∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:结论:四边形ACDF是矩形.理由:∵AF=CD,AF∥CD,∴四边形ACDF是平行四边形,∵四边形ABCD是平行四边形,∴∠BAD=∠BCD=120°,∴∠FAG=60°,∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF,∵△AGF≌△DGC,∴FG=CG,∵AG=GD,∴AD=CF,∴四边形ACDF是矩形.【考点】本题考查平行四边形的判定和性质、矩形的判定、全等三角形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题.3、(1)证明见解析;(2)4【解析】【分析】(1)欲证明四边形OCED是矩形,只需推知四边形OCED是平行四边形,且有一内角为90度即可;(2)由菱形的对角线互相垂直平分和菱形的面积公式解答.【详解】(1)∵四边形ABCD是菱形,∴AC⊥BD,∴∠COD=90°.∵CE∥OD,DE∥OC,∴四边形OCED是平行四边形,又∠COD=90°,∴平行四边形OCED是矩形;(2)由(1)知,平行四边形OCED是矩形,则CE=OD=1,DE=OC=2.∵四边形ABCD是菱形,∴AC=2OC=4,BD=2OD=2,∴菱形ABCD的面积为:AC•BD=×4×2=4,故答案为:4.【考点】本题考查了矩形的判定与性质,菱形的性质,熟练掌握矩形的判定及性质、菱形的性质是解题的关键.4、(1)见解析;(2)MN=2【解析】【分析】(1)证△OAM≌△OBN即可得;(2)作OH⊥AD,由正方形的边长为4且E为OM的中点知OH=HA=2,HM=4,再根据勾股定理得OM=2,由直角三角形性质知MN=OM=2.【详解】解:(1)∵四边形ABCD是正方形,∴OA=OB,∠DAO=45°,∠OBA=45°,∴∠OAM=∠OBN=135°,∵∠EOF=90°,∠AOB=90°,∴∠AOM=∠BON,∴△OAM≌△OBN(ASA),∴OM=ON;(2)如图,过点O作OH⊥AD于点

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论