




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》专项练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、在平面直角坐标系中,平行四边形ABCD的顶点A、B、D的坐标分别是(0,0),(5,0),(2,3),则顶点C的坐标是()A.(7,3) B.(8,2) C.(3,7) D.(5,3)2、如图,DE是ABC的中位线,点F在DE上,且∠AFB=90°,若AB=5,BC=8,则EF的长为()A.2.5 B.1.5 C.4 D.53、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是()A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④4、顺次连接矩形各边中点得到的四边形是()A.平行四边形 B.矩形 C.菱形 D.正方形5、如图,的对角线交于点O,E是CD的中点,若,则的值为()A.2 B.4 C.8 D.16第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,在▱ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC=6,PQ=4,则PC+AQ的最小值为________________.2、如图,在等腰△OAB中,OA=OB=2,∠OAB=90°,以AB为边向右侧作等腰Rt△ABC,则OC的长为__________________.3、如图,已知Rt△ACB,∠ACB=90°,∠ABC=60°,AB=8,点D在CB所在直线上运动,以AD为边作等边三角形ADE,则CB=___.在点D运动过程中,CE的最小值为___.4、如图,将长方形ABCD按图中方式折叠,其中EF、EC为折痕,折叠后、、E在一直线上,已知∠BEC=65°,那么∠AEF的度数是_____.5、如图,正方形ABCD的面积为18,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在锐角△ABC内部作出一个菱形ADEF,使∠A为菱形的一个内角,顶点D、E、F分别落在AB、BC、CA边上.(要求:尺规作图,不写作法,保留作图痕迹)2、如图,中,.(1)作点A关于的对称点C;(要求:尺规作图,不写作法,保留作图痕迹)(2)在(1)所作的图中,连接,,连接,交于点O.求证:四边形是菱形.3、如图,在矩形中,,,且四边形是一个正方形,试问点F是的黄金分割点吗?请说明理由.(补全解题过程)4、如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,,M关于直线AF对称.
(1)求证:B,M关于AE对称;(2)若的平分线交AE的延长线于G,求证:.5、如图,已知△ACB中,∠ACB=90°,E是AB的中点,连接EC,过点A作AD∥EC,过点C作CD∥EA,AD与CD交于点D.(1)求证:四边形ADCE是菱形;(2)若AB=8,∠DAE=60°,则△ACB的面积为(直接填空).-参考答案-一、单选题1、A【解析】【分析】利用平行四边形的对边平行且相等的性质,先利用对边平行,得到D点和C点的纵坐标相等,再求出CD=AB=5,得到C点横坐标,最后得到C点的坐标.【详解】解:四边形ABCD为平行四边形。且。C点和D的纵坐标相等,都为3.A点坐标为(0,0),B点坐标为(5,0),.D点坐标为(2,3),C点横坐标为,点坐标为(7,3).故选:A.【点睛】本题主要是考察了平行四边形的性质、利用线段长求点坐标,其中,熟练应用平行四边形对边平行且相等的性质,是解决与平行四边形有关的坐标题的关键.2、B【解析】【分析】根据直角三角形斜边上的中线等于斜边的一半可得,再利用三角形中位线定理可得DE=4,进而可得答案.【详解】解:∵D为AB中点,∠AFB=90°,AB=5,∴,∵DE是△ABC的中位线,BC=8,∴DE=4,∴EF=4﹣2.5=1.5,故选:B.【点睛】此题主要考查了直角三角形的性质和三角形中位线定理,三角形的中位线平行于第三边,并且等于第三边的一半.3、C【解析】【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.4、C【解析】【分析】如图,矩形中,利用三角形的中位线的性质证明,再证明四边形是平行四边形,再证明从而可得结论.【详解】解:如图,矩形中,分别为四边的中点,,四边形是平行四边形,四边形是菱形.故选C.【点睛】本题考查的是矩形的性质,菱形的判定,三角形的中位线的性质,熟练的运用三角形的中位线的性质解决中点四边形问题是解本题的关键.5、B【解析】【分析】根据平行四边形的性质可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得S△DOE=4,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵点E是CD的中点,∴S△DOE=S△COD=4,故选:B.【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键.二、填空题1、【解析】【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,∴四边形是平行四边形,∴,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,∵,,∴,在中,;故答案是:.【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键.2、2或2##或【解析】【分析】如图1,以AB为斜边作等腰Rt△ABC,根据等腰直角三角形的性质得到∠OAB=∠ABO=45°,∠CAB=∠CBA=45°,∠ACB=90°,推出四边形AOBC是正方形,根据勾股定理得到OC=AB;如图2,以AB为直角边作等腰Rt△ABC,求得∠ABC=45°,根据等腰直角三角形的性质得到∠ABO=45°,根据勾股定理得到BC,于是得到结论.【详解】解:如图1,以AB为斜边作等腰Rt△ABC,∵OA=OB=2,∠OAB=90°,∴∠OAB=∠ABO=45°,∵△ABC是等腰直角三角形,∴∠CAB=∠CBA=45°,∠ACB=90°,∴∠AOB=∠OAC=∠ACB=∠CBO=90°,∴四边形AOBC是正方形,∴OC=AB==2;如图2,以AB为直角边作等腰Rt△ABC,∴∠ABC=45°,∵OA=OB=2,∠OAB=90°,∴∠ABO=45°,AB=2,∴∠CBO=90°,∵△ABC是等腰直角三角形,∴BC==4,∴OC=,当以AB、BC为直角边作等腰直角三角形时,与图2的解法相同;综上所述,OC的长为2或2,故答案为:2或2.【点睛】本题考查了勾股定理,等腰直角三角形以及正方形的判定,正确的作出图形,进行分类讨论是解题的关键.3、4【解析】【分析】以AC为边作正△AFC,并作FH⊥AC,垂足为点H,连接FD、CE,由直角三角形可求BC=4,,由“SAS”可证△FAD≌△CAE,得CE=FD,CE最小即是FD最小,此时,故CE的最小值是.【详解】解:以AC为边作正△AFC,并作FH⊥AC,垂足为点H,连接FD、CE,如图:在Rt△ACB中,∠ACB=90°,∠ABC=60°,∴∠BAC=30°,∴,∴∵△AFC,△ADE都是等边三角形,∴AD=AE,AF=AC,∠DAE=∠FAC=60°,∴∠FAD+∠DAC=∠CAE+∠DAC,即∠FAD=∠CAE,在△FAD和△CAE中,,∴△FAD≌△CAE(SAS),∴CE=FD,∴CE最小即是FD最小,∴当FD⊥BD时,FD最小,此时∠FDC=∠DCH=∠CHF=90°,∴四边形FDCH是矩形,∴,∴CE的最小值是.故答案为:4,.【点睛】本题主要考查了等边三角形的性质,全等三角形的性质与判定,矩形的性质与判定,含30度角的直角三角形的性质,勾股定理等等,解题的关键在于能够熟练掌握等边三角形的性质.4、25°【解析】【分析】利用翻折变换的性质即可解决.【详解】解:由折叠可知,∠EF=∠AEF,∠EC=∠BEC=65°,∵∠EF+∠AEF+∠EC+∠BEC=180°,∴∠EF+∠AEF=50°,∴∠AEF=25°,故答案为:25°.【点睛】本题考查了折叠的性质,熟练掌握折叠的性质是解题的关键.5、【解析】【分析】由正方形的对称性可知,PB=PD,当B、P、E共线时PD+PE最小,求出BE即可.【详解】解:∵正方形中B与D关于AC对称,∴PB=PD,∴PD+PE=PB+PE=BE,此时PD+PE最小,∵正方形ABCD的面积为18,△ABE是等边三角形,∴BE=3,∴PD+PE最小值是3,故答案为:3.【点睛】本题考查轴对称求最短距离,熟练掌握正方形的性质是解题的关键.三、解答题1、见解析【分析】根据基本作图先作∠BAC的平分线AE,交BC于E,再利用基本作图作AE的垂直平分线DF交AB于D,交AC与F,连接DE,EF,则菱形ADEF为所求,然后证明即可.【详解】解:先作∠BAC的平分线AE,交BC于E,作AE的垂直平分线DF交AB于D,交AC与F,连接DE,EF,证明:∵DF是AE的垂直平分线,∴AD=DE,AF=EF,∴∠DEA=∠DAE,∠FAE=∠FEA,∵AE平分∠BAC,∴∠DAE=∠FAE,∴∠DEA=∠DAE=∠FAE,∠FEA=∠FAE=∠DAE,∴DE∥AF,EF∥AD,∴四边形ADEF为平行四边形,∵AD=DE,∴四边形ADEF为菱形,
如图,则菱形ADEF就是所求作的图形.【点睛】本题考查尺规作菱形,基本作图角平分线,线段垂直平分线,掌握尺规作菱形的方法,基本作图角平分线,线段垂直平分线,菱形判定是解题关键.2、(1)见解析;(2)见解析【分析】(1)作BD的垂直平分线,再截取即可;(2)先证明三角形全等,然后根据全等三角形的性质可得:,依据菱形的判定定理即可证明.【详解】(1)解:如图所示,作BD的垂直平分线,再截取,点即为所求.(2)证明:如图所示:∵,,∴,在与中,,∴;∴,又∵,∴四边形是菱形.【点睛】本题考查了尺规作图和菱形的证明,解题关键是熟练运用尺规作图方法和菱形的判定定理进行作图与证明.3、是,理由见解析【分析】根据已知得出只需求得其BF与BC的比是否符合黄金比即可.【详解】解:点F是BC的黄金分割点.理由如下:∵四边形是一个正方形,∴.又∵在矩形中,BC=AD=2,∴.∴点F是BC的黄金分割点.【点睛】此题主要考查了黄金分割点,根据已知条件和正方形的性质进行分析求解是解题关键.4、(1)见解析;(2)见解析【分析】(1)由已知可证,,即可得证;(2)由上述结论可得,再证△AFG为等腰直角三角形.【详解】解:连结AM,DM,BM,
∵D、M关于直线AF对称,∴AF垂直平分DM,∴AD=AM,FD=FM,∴△DAF≌△MAF,∴∠AMF=∠ADF=∠AME=∠ABE=90°,AM=AB,AE=AE,∴△BAE≌△MAE,∴EM=EB,∴AE垂直平分BM,∴B、M关于AE对称;(2)由(1)知△BAE≌△MAE,∴AE平分∠BEF,∴∠EAF=∠BAD=45°,又AF平分∠DFE,FG平分∠EFC,∴∠AFG=90°.∴△AFG为等腰直角三角形,∴.【点睛】本题是四边形综合题,主要考查了轴对称的性质,等腰直角三角形的判定,勾股定理,三角形的面积等知识,综合性较强,有一定难度.准确作出辅助线是解题的关键.有关45°角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解.5、(1)见解析;(2)【
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年甘肃省兰州眼科医院(兰州市第一人民医院眼科)招聘考前自测高频考点模拟试题附答案详解(考试直接用)
- 2025年生态农业循环经济示范园农业废弃物资源化利用政策环境分析报告
- 2025年家庭教育指导服务市场细分需求趋势分析报告
- 2025年房地产企业财务稳健性与风险控制策略深度报告
- 2025年安徽钱营孜发电有限公司社会招聘2人考前自测高频考点模拟试题完整参考答案详解
- 二级人事代理合同6篇
- 2025年合肥新桥国际机场有限公司见习生招募30名笔试历年参考题库附带答案详解
- 2025年黄山市祁门县国有投资集团有限公司人才招聘5人考前自测高频考点模拟试题及完整答案详解1套
- 居住房屋租赁合同(15篇)
- 2025年度哈尔滨“丁香人才周”(春季)事业单位引才招聘1347人考前自测高频考点模拟试题完整参考答案详解
- 2025年书记在公文抄袭问题专项整治工作会议上的讲话范文
- GB/T 17219-2025生活饮用水输配水设备、防护材料及水处理材料卫生安全评价
- 出差工作安全培训课件
- 2025年少先队大队委笔试试卷及答案
- 证券业反洗钱培训课件
- GJB3165A-2020航空承力件用高温合金热轧和锻制棒材规范
- 2025年执业药师考试题库大全-附答案
- 退换货方案及措施
- 2025年食药监局考试题库
- 密室逃脱消防应急预案
- 2025年协作机器人产业发展蓝皮书-高工咨询
评论
0/150
提交评论