难点解析-安徽合肥市庐江县二中7年级数学下册第五章生活中的轴对称综合测试试题(含答案解析)_第1页
难点解析-安徽合肥市庐江县二中7年级数学下册第五章生活中的轴对称综合测试试题(含答案解析)_第2页
难点解析-安徽合肥市庐江县二中7年级数学下册第五章生活中的轴对称综合测试试题(含答案解析)_第3页
难点解析-安徽合肥市庐江县二中7年级数学下册第五章生活中的轴对称综合测试试题(含答案解析)_第4页
难点解析-安徽合肥市庐江县二中7年级数学下册第五章生活中的轴对称综合测试试题(含答案解析)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽合肥市庐江县二中7年级数学下册第五章生活中的轴对称综合测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列各图中不是轴对称图形的是()A. B.C. D.2、下列图形中,是轴对称图形的是()A. B. C. D.3、如图,下列图形中,轴对称图形的个数是()A.1 B.2 C.3 D.44、下列图形中,不是轴对称图形的是().A. B. C. D.5、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中可以画出与△ABC成轴对称的格点三角形的个数为()A.2个 B.3个 C.4个 D.5个6、下列四个标志中,是轴对称图形的是()A. B. C. D.7、如图,在中,,,是上一点,将沿折叠,使点落在边上的处,则等于()A. B. C. D.8、下列学习类APP的图表中,可看作是轴对称图形的是()A. B. C. D.9、第24届冬奥会将于2022年2月4日至20日在北京市和张家口市联合举行.下面是从历届冬奥会的会徽中选取的部分图形,其中是轴对称图形的是()A. B. C. D.10、下列图案中是轴对称图形的是()A. B.C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,直线AD为ABC的对称轴,BC=6,AD=4,则图中阴影部分的面积为__________.2、如图,若P为∠AOB内一点,分别作出P点关于OA、OB的对称点P1、P2,连接P1P2交OA于M,交OB于N,P1P2=24,则△PMN的周长是___.若∠MPN=90°,则∠P1PP2的度数为___.3、正方形再任意涂黑一个,则所得黑色图案是轴对称图形的情况有______种.4、如图,腰长为22的等腰ABC中,顶角∠A=45°,D为腰AB上的一个动点,将ACD沿CD折叠,点A落在点E处,当CE与ABC的某一条腰垂直时,BD的长为_______.5、平面直角坐标系中,点P(3,1)关于x轴对称的点的坐标是______.6、如图,三角形纸片中,,,.沿过点的直线折叠这个三角形,使点落在边上的处,折痕为,则周长为__________.7、如图,在中,,点A关于的对称点是,点B关于的对称点是,点C关于的对称点是,若,,则的面积是___________.8、如图,在3×3的正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形.图中的△ABC为格点三角形.在图中最多能画出___个格点三角形与△ABC成轴对称.9、小明和小颖下棋,小明执圆子,小颖执方子.如图,棋盘中心方子的位置用(0,﹣1)表示,右上角方子的位置用(1,0)表示.小明将第4枚圆子放入棋盘后,所有棋子构成一个轴对称图形.他放的位置可以表示为____.10、如图,点关于、的对称点分别是,,线段分别交、于、,cm,则的周长为________cm.三、解答题(6小题,每小题10分,共计60分)1、如图所示,在平面直角坐标系中,已知A(0,1),B(2,0),C(4,3).(1)求出△ABC的面积为.(2)画出△ABC关于x轴对称的图形△A1B1C1.(3)已知P为y轴上一点,若△ABP的面积为4,求点P的坐标.2、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.3、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地,但途中要到水边喂马喝一次水,则将军怎样走最近?画图并说明.4、如图,方格纸中每个小方格都是边长为1的正方形,四边形ABCD的顶点与点E都是格点.(1)作出四边形ABCD关于直线AC对称的四边形AB′CD′;(2)求四边形ABCD的面积;(3)若在直线AC上有一点P,使得P到D、E的距离之和最小,请作出点P的位置.5、如图,将ABC分别沿AB,AC翻折得到ABD和AEC,线段BD与AE交于点F,连接BE.(1)若∠ABC=20°,∠ACB=30°,求∠DAE及∠BFE的度数.(2)若BD所在的直线与CE所在的直线互相垂直,求∠CAB的度数.6、作ABC关于y轴对称的A1B1C1-参考答案-一、单选题1、B【分析】根据关于某条直线对称的图形叫轴对称图形,进而判断得出即可.【详解】解:A、等边三角形是轴对称图形,不合题意;B、平行四边形不是轴对称图形,符合题意;C、正方形是轴对称图形,不符合题意;D、圆是轴对称图形,不合题意;故选:B.【点睛】本题考查了轴对称图形,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.2、A【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.【详解】解:A、是轴对称图形,故本选项符合题意;B、不是轴对称图形,故本选项不符合题意;C、不是轴对称图形,故本选项不符合题意;D、不是轴对称图形,故本选项不符合题意.故选:A.【点睛】本题主要考查了轴对称图形,轴对称图形是针对一个图形而言的,是一种具有特殊性质图形,被一条直线分割成的两部分沿着对称轴折叠时,互相重合.3、B【分析】如果一个图形沿着某条直线对折,直线两旁的部分能够重合,则称这个图形是轴对称图形,这条直线叫做对称轴;根据轴对称图形的概念逐一分析即可判断.【详解】第一、三个图形是轴对称图形,第二、四个图形不是轴对称图形,故符合题意的有两个;故选:B【点睛】本题考查了轴对称图形的概念,掌握概念是关键.4、A【详解】解:A、不是轴对称图形,故本选项符合题意;B、是轴对称图形,故本选项不符合题意;C、是轴对称图形,故本选项不符合题意;D、是轴对称图形,故本选项不符合题意;故选:A【点睛】本题主要考查了轴对称图形的定义,熟练掌握如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形是解题的关键.5、D【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.6、D【分析】利用轴对称图形的定义进行解答即可.【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.7、D【分析】先根据三角形内角和定理求出∠B的度数,再由图形翻折变换的性质得出∠CED的度数,再由三角形外角的性质即可得出结论.【详解】解:在Rt△ACB中,∠ACB=90°,∠A=25°,∴∠B=90°-25°=65°,∵△CDE由△CDB折叠而成,∴∠CED=∠B=65°,∵∠CED是△AED的外角,∴∠ADE=∠CED-∠A=65°-25°=40°.故选:D.【点睛】本题考查了三角形内角和定理,翻折变换的性质,根据题意得出∠ADE=∠CED-∠A是解题关键.8、C【分析】根据轴对称图形的定义逐一进行判断即可得答案.【详解】A.不是轴对称图形,故该选项不符合题意,B.不是轴对称图形,故该选项不符合题意,C.是轴对称图形,故该选项符合题意,D.不是轴对称图形,故该选项不符合题意,故选:C.【点睛】本题考查的是轴对称图形,如果一个图形沿着一条直线对折后两部分完全重合,那么这样的图形就叫做轴对称图形;轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.9、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行逐一判断即可.【详解】解:A、不是轴对称图形,故此选项不符合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项符合题意;D、不是轴对称图形,故此选项符合题意;故选B.【点睛】本题主要考查了轴对称图形的定义,熟知定义是解题的关键.10、B【分析】根据轴对称图形的概念(如果一个图形沿着某条直线对折后,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)逐一判断即可.【详解】A不是轴对称图形,故该选项错误;B是轴对称图形,故该选项正确;C不是轴对称图形,故该选项错误;D不是轴对称图形,故该选项错误.故选:B.【点睛】本题主要考查轴对称图形,掌握轴对称图形的概念是解题的关键.二、填空题1、6【分析】根据轴对称的性质判断出阴影部分的面积的和等于三角形的面积的一半,AD⊥BC,然后根据三角形的面积列式计算即可得解.【详解】解:∵AD所在的直线是△ABC的对称轴,∴阴影部分的面积的和等于三角形的面积的一半,AD⊥BC,∴阴影部分的面积和=×(×6×4)=6.故答案为:6.【点睛】本题考查轴对称的性质,对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直平分,对称轴上的任何一点到两个对应点之间的距离相等,对应的角、线段都相等.2、24【分析】①根据轴对称的性质可得,,然后根据三角形的周长定义求出的周长为P1P2,从而得解;②根据等边对等角可得:,,由三角形外角的性质可得:,,再根据三角形内角和定理得:,最后依据各角之间得数量关系即可求出答案.【详解】解:①如图,∵P点关于OA、OB的对称点P1,P2,∴,,的周长,∵,∴的周长为24;②∵,,∴,,∴,,∵,∴,∴,∴;故①答案为:24;②答案为:.【点睛】题目主要考查轴对称的性质及等腰三角形的性质,三角形外角和定理等知识点,熟练掌握各知识点间的相互联系,融会贯通综合运用是解题关键.3、4【分析】利用轴对称图形定义进行补图即可.【详解】解:如图所示:,共4种,故答案为:4.【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.4、或2【分析】分两种情况:当CE⊥AB时,设垂足为M,在Rt△AMC中,∠A=45°,由折叠得:∠ACD=∠DCE=22.5°,证明△BCM≌△DCM,得到BM=DM,证明△MDE是等腰直角三角形,即可得解;当CE⊥AC时,根据折叠的性质,等腰直角三角形的判定与性质计算即可;【详解】当CE⊥AB时,如图,设垂足为M,在Rt△AMC中,∠A=45°,由折叠得:∠ACD=∠DCE=22.5°,∵等腰△ABC中,顶角∠A=45°,∴∠B=∠ACB=67.5°,∴∠BCM=22.5°,∴∠BCM=∠DCM,在△BCM和△DCM中,,∴△BCM≌△DCM(ASA),∴BM=DM,由折叠得:∠E=∠A=45°,AD=DE,∴△MDE是等腰直角三角形,∴DM=EM,设DM=x,则BM=x,DEx,∴ADx.∵AB=22,∴2xx=22,解得:x,∴BD=2x=2;当CE⊥AC时,如图,∴∠ACE=90°,由折叠得:∠ACD=∠DCE=45°,∵等腰△ABC中,顶角∠A=45°,∴∠E=∠A=45°,AD=DE,∴∠ADC=∠EDC=90°,即点D、E都在直线AB上,且△ADC、△DEC、△ACE都是等腰直角三角形,∵AB=AC==22,∴ADAC=2,BD=AB﹣AD=(22)﹣(2),综上,BD的长为或2.故答案为:或2.【点睛】本题主要考查折叠的性质,等腰直角三角形的判定与性质,全等三角形的判定与性质,注重分类讨论思想的运用是解题的关键.5、【分析】根据关于x轴的对称点的坐标特征求解即可;【详解】解:根据关于x轴的对称点的特征,横坐标不变,纵坐标变为相反数可得:点关于轴对称的点的坐标是;故答案是.【点睛】本题主要考查了平面直角坐标系中点的对称性,掌握关于x轴对称的点的特征,准确计算是解题的关键.6、13【分析】由对折可得:再求解从而可得答案.【详解】解:由对折可得:故答案为:【点睛】本题考查的是轴对称的性质,根据轴对称的性质得到是解本题的关键.7、18【分析】连接B′B,并延长交C′A′于点D,交AC于点E,再根据对称的性质可知C′B=BC,A′B=BA,AC//A′C′,AC=A′C′,且BB′⊥AC,B′E=BE,得B′D=3BE,然后利用三角形面积公式可得到S△A′B′C′=3S△ABC.【详解】解:连接B′B,并延长交C′A′于点D,交AC于点E,如图,∵点B关于AC的对称点是B',∴EB′=EB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′D=3BE,∴S△A′B′C′=A′C′×B′E=3××BD×AC=3S△ABC.∵S△ABC=∴S△A′B′C′=故答案为18【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.8、6【分析】根据网格结构分别确定出不同的对称轴,然后作出轴对称三角形即可得解【详解】解:如图,以AB的中垂线为对称轴如图1,以BC边所在直线为对称轴如图2,以AB边所在三网格中间网格的垂直平分线为对称轴如图3,以BC边中垂线为对称轴,以3×3网格的对角线所在直线为对称轴如图5,图6,最多能画出6个格点三角形与△ABC成轴对称.故答案为:6.【点睛】本题考查了利用轴对称变换作图,熟练掌握网格结构并准确找出对应点的位置是解题的关键,本题难点在于确定出不同的对称轴.9、【分析】根据题意确定坐标原点的位置,根据轴对称图形的性质,确定圆子的位置,再求出坐标即可.【详解】解:根据题意可得:棋盘中心方子的坐标为(0,﹣1),右上角方子的坐标为(1,0)则坐标原点为最右侧中间圆子的位置,如图建立坐标系:放入第4枚圆子,使得图形为轴对称图形,则圆子的位置应该在中间一排方子的上方,如下图:点的位置坐标为故答案为【点睛】此题考查了图形与坐标,轴对称图形的性质,解题的关键是根据题意确定原点的位置并且确定轴对称图形时,圆子的位置.10、8【分析】首先根据点P关于OA、OB的对称点分别是P1,P2,可得PD=P1D,PC=P2C;然后根据P1P2=8cm,可得P1D+DC+P2C=8cm,所以PD+DC+PC=8cm,即△PCD的周长为8cm,据此解答即可.【详解】解:∵点P关于OA、OB的对称点分别是P1,P2,∴PD=P1D,PC=P2C;∵P1P2=8(cm),∴P1D+DC+P2C=8(cm),∴PD+DC+PC=8(cm),即△PCD的周长为8cm.故答案为:8.【点睛】本题考查了轴对称的性质的应用,要熟练掌握,解题的关键是判断出:PD=P1D,PC=P2C.此题还考查了三角形的周长的含义以及求法的应用,要熟练掌握.三、解答题1、(1)4;(2)△A1B1C1为所求作的三角形,画图见详解;(3)点P的坐标为(0,5)或(0,-3).【分析】(1)利用割补法求△ABC面积,S△ABC=S梯形AODC-S△ABO-S△CDB代入计算即可;(2)利用关于x轴对称,横坐标不变,纵坐标变为相反数,先求出A、B、C对称点坐标A1(0,-1),B1(2,0),C1(4,-3).然后描点A1(0,-1),B1(2,0),C1(4,-3).再顺次连结线段A1B1,B1C1.C1A1即可;(3)点P在y轴上,根据三角形面积先求出底AP的长,在分两种情况点P在点A的上方与下方,求出点P的坐标即可.【详解】解:(1)过点C作CD⊥x轴于D,∵A(0,1),B(2,0),C(4,3),∴AO=1,OB=2,OD=4,CD=3,BD=OD-OB=4-2=2,S△ABC=S梯形AODC-S△ABO-S△CDB=,=,=,=4,故答案为4;(2)∵△ABC关于x轴对称的图形△A1B1C1,A(0,1),B(2,0),C(4,3).∴A1(0,-1),B1(2,0),C1(4,-3).描点:A1(0,-1),B1(2,0),C1(4,-3).顺次连结A1B1,B1C1.C1A1.则△A1B1C1为所求作的三角形;(3)点P在y轴上,以AP为底,以OB为高,∴S△ABP=,∴,∴,设点P的坐标为(0,n),当点P在点A下方,1-n=4,解得n=-3,当点P在点A上方,n-1=4,解得n=5,△ABP的面积为4,点P的坐标为(0,5)或(0,-3).【点睛】本题考查割补法求三角形面积,用描点法化轴对称图形方法,根据三角形面积建立AP的方程,利用分类讨论思想求出点P坐标是解题关键.2、∠AFB=40°.【分析】由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.【详解】解:∵AD⊥BE,∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,∵AE是∠MAC的平分线,BF平分∠ABC,∴,又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,∴∠AFB=∠MAE﹣∠ABF=.【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.3、见解析【分析】根据轴对称的性质作出B点与河面的对称点B′,连接A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论