难点详解人教版8年级数学下册《平行四边形》章节练习试卷(详解版)_第1页
难点详解人教版8年级数学下册《平行四边形》章节练习试卷(详解版)_第2页
难点详解人教版8年级数学下册《平行四边形》章节练习试卷(详解版)_第3页
难点详解人教版8年级数学下册《平行四边形》章节练习试卷(详解版)_第4页
难点详解人教版8年级数学下册《平行四边形》章节练习试卷(详解版)_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教版8年级数学下册《平行四边形》章节练习考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C.已知,.点B到原点的最大距离为()A.22 B.18 C.14 D.102、如图,的对角线交于点O,E是CD的中点,若,则的值为()A.2 B.4 C.8 D.163、在锐角△ABC中,∠BAC=60°,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:①NP=MP;②AN:AB=AM:AC;③BN=2AN;④当∠ABC=60°时,MN∥BC,一定正确的有()A.①②③ B.②③④ C.①②④ D.①④4、四边形四条边长分别是a,b,c,d,其中a,b为对边,且满足,则这个四边形是()A.任意四边形 B.平行四边形 C.对角线相等的四边形 D.对角线垂直的四边形5、如图,已知是平分线上的一点,,,是的中点,,如果是上一个动点,则的最小值为()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,M,N分别是矩形ABCD的边AD,AB上的点,将矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,连接MC,若AB=8,AD=16,BE=4,则MC的长为________.2、如图,△ABC中,AC=BC=3,AB=2,将它沿AB翻折得到△ABD,点P、E、F分别为线段AB、AD、DB上的动点,则PE+PF的最小值是_____.3、如果一个矩形较短的边长为5cm,两条对角线的夹角为60°,则这个矩形的对角线长是_________cm.4、如图,在矩形中,,,点是线段上的一点(不与点,重合),将△沿折叠,使得点落在处,当△为等腰三角形时,的长为___________.5、如图,在矩形纸片ABCD中,AB=6,BC=4,点E是AD的中点,点F是AB上一动点将AEF沿直线EF折叠,点A落在点A′处在EF上任取一点G,连接GC,,,则的周长的最小值为________.三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形中,为对角线.(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若,求的度数.2、如图,已知△ACB中,∠ACB=90°,E是AB的中点,连接EC,过点A作AD∥EC,过点C作CD∥EA,AD与CD交于点D.(1)求证:四边形ADCE是菱形;(2)若AB=8,∠DAE=60°,则△ACB的面积为(直接填空).3、如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.(1)求证:四边形DEFB是平行四边形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四边形DEFB的周长.4、如图,在矩形中,,,且四边形是一个正方形,试问点F是的黄金分割点吗?请说明理由.(补全解题过程)5、已知如图,在中,点是边上一点,连接,点是上一动点,连接.(1)如图1,当时,连接,延长交于点,求证:;(2)如图2,以为直角边作等腰,连接,若,当点在运动过程中,求周长的最小值.

-参考答案-一、单选题1、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE的长,然后由三角形三边关系,求得点B到原点的最大距离.【详解】解:取AC的中点E,连接BE,OE,OB,∵∠AOC=90°,AC=16,∴OE=CEAC=8,∵BC⊥AC,BC=6,∴BE10,若点O,E,B不在一条直线上,则OB<OE+BE=18.若点O,E,B在一条直线上,则OB=OE+BE=18,∴当O,E,B三点在一条直线上时,OB取得最大值,最大值为18.故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系.此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.2、B【解析】【分析】根据平行四边形的性质可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得S△DOE=4,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵点E是CD的中点,∴S△DOE=S△COD=4,故选:B.【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键.3、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定①正确;利用含30度角的直角三角形的性质即可判定②正确,由勾股定理即可判定③错误;由等边三角形的判定及性质、三角形中位线定理即可判定④正确.【详解】∵CM、BN分别是高∴△CMB、△BNC均是直角三角形∵点P是BC的中点∴PM、PN分别是两个直角三角形斜边BC上的中线∴故①正确∵∠BAC=60゜∴∠ABN=∠ACM=90゜−∠BAC=30゜∴AB=2AN,AC=2AM∴AN:AB=AM:AC=1:2即②正确在Rt△ABN中,由勾股定理得:故③错误当∠ABC=60゜时,△ABC是等边三角形∵CM⊥AB,BN⊥AC∴M、N分别是AB、AC的中点∴MN是△ABC的中位线∴MN∥BC故④正确即正确的结论有①②④故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键.4、B【解析】【分析】根据完全平方公式分解因式得到a=b,c=d,利用边的位置关系得到该四边形的形状.【详解】解:,,,,∴a=b,c=d,∵四边形四条边长分别是a,b,c,d,其中a,b为对边,∴c、d是对边,∴该四边形是平行四边形,故选:B.【点睛】此题考查了完全平方公式分解因式,平行四边形的判定方法,熟练掌握完全平方公式分解因式是解题的关键.5、C【解析】【分析】根据题意由角平分线先得到是含有角的直角三角形,结合直角三角形斜边上中线的性质进而得到OP,DP的值,再根据角平分线的性质以及垂线段最短等相关内容即可得到PC的最小值.【详解】解:∵点P是∠AOB平分线上的一点,,∴,∵PD⊥OA,M是OP的中点,∴,∴∵点C是OB上一个动点∴当时,PC的值最小,∵OP平分∠AOB,PD⊥OA,∴最小值,故选C.【点睛】本题主要考查了角平分线的性质、含有角的直角三角形的选择,直角三角形斜边上中线的性质、垂线段最短等相关内容,熟练掌握相关性质定理是解决本题的关键.二、填空题1、10【解析】【分析】过E作EF⊥AD于F,根据矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,得出△ANM≌△ENM,可得AM=EM,根据矩形ABCD,得出∠B=∠A=∠D=90°,再证四边形ABEF为矩形,得出AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4,根据勾股定理,即,解方程m=10即可.【详解】解:过E作EF⊥AD于F,∵矩形ABCD沿MN折叠,使点A恰好落在边BC上的点E处,∴△ANM≌△ENM,∴AM=EM,∵矩形ABCD,∴∠B=∠A=∠D=90°,∵FE⊥AD,∴∠AFE=∠B=∠A=90°,∴四边形ABEF为矩形,∴AF=BE=4,FE=AB=8,设AM=EM=m,FM=m-4在Rt△FEM中,根据勾股定理,即,解得m=10,∴MD=AD-AM=16-10=6,在Rt△MDC中,∴MC=.故答案为10.【点睛】本题考查折叠轴对称性质,矩形判定与性质,勾股定理,掌握折叠轴对称性质,矩形判定与性质,勾股定理是解题关键.2、##【解析】【分析】首先证明四边四边形ABCD是菱形,作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,求出ME即可.【详解】解:作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P′,此时P′E′+P′F最小,此时P′E′+P′F=ME′,过点A作AN⊥BC,CH⊥AB于H,∵△ABC沿AB翻折得到△ABD,∴AC=AD,BC=BD,∵AC=BC,∴AC=AD=BC=BD,∴四边形ADBC是菱形,∵AD∥BC,∴ME′=AN,∵AC=BC,∴AH=AB=1,由勾股定理可得,CH=,∵×AB×CH=×BC×AN,可得AN=,∴ME′=AN=,∴PE+PF最小为.故答案为:.【点睛】本题考查翻折变换,等腰三角形的性质,轴对称−最短问题等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.3、10【解析】【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形,是等边三角形,故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.4、或【解析】【分析】根据题意分,,三种情况讨论,构造直角三角形,利用勾股定理解决问题.【详解】解:∵四边形是矩形∴,∵将△沿折叠,使得点落在处,∴,,设,则①当时,如图过点作,则四边形为矩形,在中在中即解得②当时,如图,设交于点,设垂直平分在中即在中,即联立,解得③当时,如图,又垂直平分垂直平分此时重合,不符合题意综上所述,或故答案为:或【点睛】本题考查了矩形的性质,勾股定理,等腰三角形的性质与判定,垂直平分线的性质,分类讨论是解题的关键.5、【解析】【分析】连接AC交EF于G,连接A′G,此时△CGA′的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.当CA′最小时,△CGA′的周长最小,求出CA′的最小值即可解决问题.【详解】解:如图,连接AC交EF于G,连接A′G,连接EC,由折叠的性质可知A′G=GA,此时△A′GC的周长最小,最小值=A′G+GC+CA′=GA+GC+CA′=AC+CA′.∵四边形ABCD是矩形,∴∠D=90°,AD=BC=4,CD=AB=6,∴AC2,∴△A′CG的周长的最小值+CA′,当CA′最小时,△CGA′的周长最小,∵AE=DE=EA′=2,∴CE2,∵CA′≥EC﹣EA′,∴CA′≥2-2,∴CA′的最小值为2-2,∴△CGA′的周长的最小值为2-2,故答案为:.【点睛】本题考查翻折变换,矩形的性质,勾股定理,最短路径问题等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.三、解答题1、(1)图形见解析;(2)【分析】(1)利用尺规根据题意即可完成作图;

(2)结合(1)根据等腰三角形的性质和三角形外角定理可得的度数.【详解】(1)如图,点E和点F即为所求;

(2)∵,∠ABD=68°,

∴∠AEB=∠AEB=68°∴∠EAB=180°-68°-68°=44°,

∴∠EAD=90°-44°=46°,

∵AF平分∠DAE,

∴∠FAE=∠DAE=23°,

∴【点睛】题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键.2、(1)见解析;(2)【分析】(1)由AD//CE,CD//AE,得四边形AECD为平行四边形,根据直角三角形斜边上中线性质,得CE=AE,可知四边形ADCE是菱形;(2)由菱形的性质可得当∠DAE=60°时,∠CAE=30°,可求BC,再根据勾股定理求出AC,最后求面积即可.【详解】解:(1)∵∥,∥,∴四边形是平行四边形.∵,是的中点,∴,∴四边形是菱形;(2)∵四边形是菱形,,∴.∵在Rt△中,,,,∴,∴.∴.【点睛】此题主要考查了菱形的性质和判定,含30度角的直角三角形的性质,直角三角形斜边上的中线,勾股定理,三角形面积,能够灵活运用菱形知识解决有关问题是解题的关键.3、(1)见解析;(2)平行四边形DEFB的周长=【分析】(1)证DE是△ABC的中位线,得DE∥BC,BC=2DE,再证DE=BF,即可得出四边形DEFB是平行四边形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【详解】(1)证明:∵点D,E分别是AC,AB的中点,∴DE是△ABC的中位线,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四边形DEFB是平行四边形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,∴BD=EF,∵D是AC的中点,AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四边形DEFB的周长=2(DE+BD)=2(4+10)=28(cm).【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握三角形中位线定理,证明四边形DEFB为平行四边形是解题的关键.4、是,理由见解析【分析】根据已知得出只需求得其BF与BC的比是否符合黄金比即可.【详解】解:点F是BC的黄金分割点.理由如下:∵四边形是一个正方形,∴.又∵在矩形中,BC=AD=2,∴.∴点F是BC的黄金分割点.【点睛】此题主要考查了黄金分割点,根据已知条件和正方形的性质进行分析求解是解题关键.5、(1)证明见解析;(2)【分析】(1)通过证明△CEK≌△BEF及△KED≌△FED即可证明;(2)延长CE到点P,使EP=CE,先证明点G在过点P且与CE垂直的直线PN上运动,再作点E关于点P的对称点Q,连接BQ交PN于点G,此时△BEG的周长最小,求出此时GE+GB+BE的值即可.【详解】证明:(1)∵四边形ABCD是平行四边形,∴,∴∠K=∠ABE,∵BF⊥AB,∴∠ABF=90°,∴∠ABE=90°﹣∠EBF=∠BFE,∴∠K=∠BFE,∵BE=CE,∴△CEK≌△BEF(AAS),∴CK=BF,EK=EF,∵,∴∠KED=∠EBC,∠FED=∠

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论