考点解析四川广安友谊中学7年级数学下册第五章生活中的轴对称专题测试练习题(解析版)_第1页
考点解析四川广安友谊中学7年级数学下册第五章生活中的轴对称专题测试练习题(解析版)_第2页
考点解析四川广安友谊中学7年级数学下册第五章生活中的轴对称专题测试练习题(解析版)_第3页
考点解析四川广安友谊中学7年级数学下册第五章生活中的轴对称专题测试练习题(解析版)_第4页
考点解析四川广安友谊中学7年级数学下册第五章生活中的轴对称专题测试练习题(解析版)_第5页
已阅读5页,还剩22页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

四川广安友谊中学7年级数学下册第五章生活中的轴对称专题测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、下列说法正确的是()A.轴对称图形是由两个图形组成的 B.等边三角形有三条对称轴C.两个等面积的图形一定轴对称 D.直角三角形一定是轴对称图形2、下列消防图标中,是轴对称图形的是()A. B. C. D.3、如图,在2×2正方形网格中,格线的交点称为格点,以格点为顶点的三角形称为格点三角形,图中的△ABC为格点三角形,在图中可以画出与△ABC成轴对称的格点三角形的个数为()A.2个 B.3个 C.4个 D.5个4、下列图形为轴对称图形的是()A. B. C. D.5、在一些美术字中,有的汉字是轴对称图形.下面个汉字中,可以看作是轴对称图形的是()A. B. C. D.6、下列图形中,属于轴对称图形的是()A. B. C. D.7、如图,下列图形中,轴对称图形的个数是()A.1个 B.2个 C.3个 D.4个8、放风筝是我国人民非常喜爱的一项户外娱乐活动,下列风筝剪纸作品中,不是轴对称图形的是()A. B.C. D.9、下列图形中,不一定是轴对称图形的是()A.直角三角形 B.等腰三角形 C.等边三角形 D.正方形10、下列四个图形中,不是轴对称图形的为()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图的三角形纸片中,AB=7,AC=5,BC=6,沿过点C的直线折叠这个三角形,使点A落在BC边上的点E处,折痕为CD,则△BED的周长为_________.2、如图,∠AOB=30°,M,Q在OA上,P,N在OB上,OM=1,ON=,则MP+PQ+QN的最小值是______________.3、如图,△ABC中,AB=8cm,BC=5cm,AC=6cm,沿过点B的直线折叠三角形,使点C落在AB边上的点E处,折痕为BD,则△AED的周长长度为__________.4、图中与标号“1”的三角形成轴对称的三角形的个数为________.5、如图,在中,,点A关于的对称点是,点B关于的对称点是,点C关于的对称点是,若,,则的面积是___________.6、如图所示,其中与甲成轴对称的图形是___________.7、如图,把一张长方形纸片沿折叠,点D与点C分别落在点和点的位置上,与的交点为G,若,则为______度.8、在线段、角、圆、长方形、梯形、三角形、等边三角形中,是轴对称图形的有__________个.9、请你发现图中的规律,在空格_____上画出简易图案10、如图,四边形ABCD中,AD∥BC,直线l是它的对称轴,∠B=53°,则∠D的大小为______°.三、解答题(6小题,每小题10分,共计60分)1、如图,在△ABC中,AD⊥BE,∠DAC=10°,AE是∠BAC的外角∠MAC的平分线,BF平分∠ABC交AE于点F,求∠AFB的度数.2、如图,格点△ABC在网格中的位置如图所示.(1)画出△ABC关于直线MN的对称△A'B'C';(2)若网格中每个小正方形的边长为1,则△A'B'C'的面积为;(3)在直线MN上找一点P,使PA+PC最小(不写作法,保留作图痕迹).3、如图,在中,,,平分交于点,过点作,垂足为.(1)求证:;(2)若的周长为,求的长.4、作ABC关于y轴对称的A1B1C15、如图,网格中的△ABC与△DEF为轴对称图形.(1)利用网格线作出△ABC与△DEF的对称轴l;(2)如果每一个小正方形的边长为1,请直接写出△ABC的面积=.6、(阅读与理解)折纸,常常能为证明一个命题提供思路和方法,例如,在△ABC中,AB>AC(如图),怎样证明∠C>∠B呢?(分析)把AC沿∠A的角平分线AD翻折,因为AB>AC,所以点C落在AB上的点C’处,即AC=AC’,据以上操作,易证明△ACD≌△AC’D,所以∠AC’D=∠C,又因为∠AC’D>∠B,所以∠C>∠B.(感悟与应用)(1)如图(1),在△ABC中,∠ACB=90°,∠B=30°,CD平分∠ACB,试判断AC和AD、BC之间的数量关系,并说明理由;(2)如图(2),在四边形ABCD中,AC平分∠DAB,CD=CB.求证:∠B+∠D=180°.-参考答案-一、单选题1、B【分析】根据轴对称图形的定义逐一进行判定解答.【详解】解:A、轴对称图形可以是1个图形,不符合题意;B、等边三角形有三条对称轴,即三边垂直平分线,符合题意;C、两个等面积的图形不一定轴对称,不符合题意;D、直角三角形不一定是轴对称图形,不符合题意.故选:B.【点睛】本题考查轴对称图形的定义与性质,如果一个图形沿着一条直线对折,两侧的图形能完全重合,这个图形就是轴对称图形.折痕所在的这条直线叫做对称轴.2、B【详解】解:A、不是轴对称图形,故本选项错误,不符合题意;B、是轴对称图形,故本选项正确,符合题意;C、不是轴对称图形,故本选项错误,不符合题意;D、不是轴对称图形,故本选项错误,不符合题意;故选:B【点睛】本题主要考查了轴对称图形的定义,熟练掌握若一个图形沿着一条直线折叠后两部分能完全重合,这样的图形就叫做轴对称图形,这条直线叫做对称轴是解题的关键.3、D【分析】在网格中画出轴对称图形即可.【详解】解:如图所示,共有5个格点三角形与△ABC成轴对称,故选:D【点睛】本题考查了轴对称,解题关键是熟练掌握轴对称的定义,准确画出图形.4、A【分析】根据如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴进行分析即可.【详解】解:选项B、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是轴对称图形,选项A能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是轴对称图形,故选:A.【点睛】此题主要考查了轴对称图形,关键是正确确定对称轴位置.5、A【分析】如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.利用轴对称图形的定义进行判断即可.【详解】解:A、是轴对称图形,故此选项符合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不符合题意;D、不是轴对称图形,故此选项不符合题意;故选:A【点睛】此题主要考查了轴对称图形的定义,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形,这条直线叫做对称轴.6、A【分析】根据轴对称的定义,把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称图形判断即可;【详解】根据轴对称图形的定义可知,是轴对称图形;故选A.【点睛】本题主要考查了轴对称图形的识别,准确分析判断是解题的关键.7、B【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形进行判断即可.【详解】解:第一个图形不是轴对称图形;第二个图形是轴对称图形;第三个图形是轴对称图形;第四个图形不是轴对称图形;∴轴对称图形有2个,故选B.【点睛】本题主要考查了轴对称图形,解题的关键在于能够熟练掌握轴对称图形的定义.8、B【分析】根据轴对称图形的概念求解.在平面内,如果一个图形沿一条直线对折,对折后的两部分都能完全重合,这样的图形叫做轴对称图形,这条直线就是其对称轴.【详解】解:A、是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项符合题意;C、是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项不合题意.故选:B.【点睛】本题考查了轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合.9、A【分析】根据轴对称图形的概念求解即可.【详解】解:根据轴对称的定义,等腰三角形、等边三角形、正方形一定是轴对称图形,直角三角形不一定是轴对称图形,故选:A.【点睛】本题主要考查了轴对称图形的知识,掌握轴对称图形的概念是解决此类问题的关键.10、C【分析】根据轴对称图形的意义:如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴;对各选项依次进行判断即可.【详解】解:选项A是等腰梯形,是轴对称图形,不合题意;选项B是等腰三角形是轴对称图形,不合题意;选项C是旋转对称图图形,不是轴对称图形,符合题意;选项D正五边形是轴对称图形,不合题意;故选:C.【点睛】此题考查了轴对称图形的意义,判断轴对称图形的关键是寻找对称轴,看图形对折后两部分是否完全重合.二、填空题1、8【分析】由折叠可得:再求解利用从而可得答案.【详解】解:由折叠可得:故答案为:【点睛】本题考查的是轴对称的性质,掌握“成轴对称的两个图形的对应边相等”是解本题的关键.2、【分析】作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.【详解】解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,∴△ONN′为等边三角形,△OMM′为等边三角形,∴∠N′OM′=90°,∴在Rt△M′ON′中,.故答案为:.【点睛】本题考查了轴对称-最短路径问题,根据轴对称的定义,找到相等的线段,得到等边三角形是解题的关键.3、9cm【分析】根据翻折的性质可知CD=DE,BC=BE,于是可以得到AD+DE的长和AE的长,从而可以得到△ADE的周长.【详解】解:由题意可得,BC=BE,CD=DE,∵AB=8cm,BC=5cm,AC=6cm,∴AD+DE=AD+CD=AC=6cm,AE=AB-BE=AB-BC=8-5=3cm,∴AD+DE+AE=9cm,即△AED的周长为9cm,故选:C.【点睛】本题考查翻折变换和三角形的周长,解答本题的关键是利用等量代换的思想,求三角形的周长.4、2个【分析】根据轴对称图形的定义(如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,那么这个图形叫做轴对称图形)即可得.【详解】解:图中与标号“1”的三角形成轴对称的三角形是标号“2”和“4”,共有2个,故答案为:2个.【点睛】本题考查了轴对称图形,熟记定义是解题关键.5、18【分析】连接B′B,并延长交C′A′于点D,交AC于点E,再根据对称的性质可知C′B=BC,A′B=BA,AC//A′C′,AC=A′C′,且BB′⊥AC,B′E=BE,得B′D=3BE,然后利用三角形面积公式可得到S△A′B′C′=3S△ABC.【详解】解:连接B′B,并延长交C′A′于点D,交AC于点E,如图,∵点B关于AC的对称点是B',∴EB′=EB,BB′⊥AC,∵点C关于AB的对称点是C',∴BC=BC′,∵点A关于BC的对称点是A',∴AB=A′B,而∠ABC=∠A′BC′,∴△ABC≌△A′BC′(SAS),∴∠C=∠A′C′B,AC=A′C′,∴AC∥A′C′,∴DE⊥A′C′,而△ABC≌△A′BC′,∴BD=BE,∴B′D=3BE,∴S△A′B′C′=A′C′×B′E=3××BD×AC=3S△ABC.∵S△ABC=∴S△A′B′C′=故答案为18【点睛】本题考查了轴对称的性质:如果两个图形关于某直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线.6、丁【分析】根据轴对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,进行判断即可.【详解】解:观察图形可知与甲成轴对称的图形是丁,故答案为:丁.【点睛】本题主要考查了轴对称图形的定义,解题的关键在于能够熟练掌握轴对称图形的定义.7、【分析】由折叠的性质可以得,从而求出,再由平行线的性质得到.【详解】解:由折叠的性质可知,,∵∠EFG=55°,∴,∴,∵四边形ABCD是长方形∴AD∥BC,DE∥,∴,故答案为:70.【点睛】本题主要考查了折叠的性质,平行线的性质,解题的关键在于能够熟练掌握相关知识进行求解.8、5【分析】根据轴对称图形的概念:如果一个图形沿一条直线折叠后,直线两旁的部分能够互相重合,那么这个图形叫做轴对称图形.据此作答.【详解】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;角的平分线所在直线就是对称轴,是轴对称图形,符合题意;圆有无数条对称轴,是轴对称图形,符合题意;长方形有二条对称轴,是轴对称图形,符合题意;梯形不一定是轴对称图形,不符合题意;三角形不一定是轴对称图形,不符合题意;等边三角形三条中线所在的直线是对称轴,是轴对称图形,符合题意;故轴对称图形共有5个.故答案为:5.【点睛】本题考查了轴对称的概念.轴对称的关键是寻找对称轴,图象沿某一直线折叠后可以重合.9、【分析】由图知,该图案是1,2,3,4,5的轴对称构成的图象,据此可得答案.【详解】解:为1的轴对称构成的图象,为2的轴对称构成的图象,为4的轴对称构成的图象,为5的轴对称构成的图象,故横线上为3的轴对称构成的图象.故答案为.【点睛】本题考查了图形的变化规律.解题的关键是根据题意得到图案是1,2,3,4,5的轴对称构成的图象.10、127【分析】根据轴对称性质得出∠C=∠B=53°,根据平行线性质得出∠C+∠D=180°即可.【详解】解:直线l是四边形ABCD的对称轴,∠B=53°,∴∠C=∠B=53°,∵AD∥BC,∴∠C+∠D=180°,∴∠D=180°-53°=127°.故答案为:127.【点睛】本题考查轴对称性质,平行线性质,求一个角的的补角,掌握轴对称性质,平行线性质,求一个角的的补角.三、解答题1、∠AFB=40°.【分析】由题意易得∠ADC=90°,∠ACB=80°,然后可得,进而根据三角形外角的性质可求解.【详解】解:∵AD⊥BE,∴∠ADC=90°,∵∠DAC=10°,∴∠ACB=90°﹣∠DAC=90°﹣10°=80°,∵AE是∠MAC的平分线,BF平分∠ABC,∴,又∵∠MAE=∠ABF+∠AFB,∠MAC=∠ABC+∠ACB,∴∠AFB=∠MAE﹣∠ABF=.【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键.2、(1)见解析;(2)3.5;(3)见解析【分析】(1)依据轴对称的性质,首先确定A、B、C三点的对称点位置,再连接即可;(2)依据割补法进行计算,即可得到△A'B'C'的面积;(3)依据轴对称的性质以及两点之间,线段最短,连接AC′,与MN的交点位置就是点P的位置.【详解】解:(1)如图所示:△A'B'C'即为所求;(2)△A'B'C'的面积:3×3-×1×3-×2×3-×1×2=9-1.5-3-1=3.5;故答案为:3.5;(3)如图,点P即为所求.【点睛】本题主要考查了利用轴对称变换作图,凡是涉及最短距离的问题,一般要考虑线段的性质定理,结合轴对称变换来解决,多数情况要作点关于某直线的对称点.3、(1)见解析;(2)20.【分析】(1)欲证明AC=AE,只要证明△ADC≌△ADE(AAS)即可.(2)证明△BDE的周长=AB即可解决问题.【详解】(1)证明:∵AD平分∠CAB,∴∠DAC=∠DAE,∵∠C=90°,DE⊥AB,∴∠C=∠AED=90°,∵AD=AD,∴△ADC≌△ADE(AAS),∴AC=AE.(2)解:∵△ADC≌△ADE,∴AC=BC=AE,DE=DC,∵△BDE的周长=DE+BD+BE=20,∴DC+DB+BE=20,∴BC+BE=20,∵BC=AC=AE,∴AE+EB=20,∴AB=20.【点睛】本题考查全等三角形的判定和性质,角平分线的定义等知识,解题的关键是正确寻找全等三角形解决问题,重合用转化的思想思考问题.4、见解析【分析】直接利用轴对称图形的性质得出对应点位置进而得出答案.【详解】解:如图所示:【点睛】本题主要考查了利用轴对称变换作图,几何图形都可看做是由点组成,我

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论