难点解析-沪科版8年级下册期末测试卷及完整答案详解(易错题)_第1页
难点解析-沪科版8年级下册期末测试卷及完整答案详解(易错题)_第2页
难点解析-沪科版8年级下册期末测试卷及完整答案详解(易错题)_第3页
难点解析-沪科版8年级下册期末测试卷及完整答案详解(易错题)_第4页
难点解析-沪科版8年级下册期末测试卷及完整答案详解(易错题)_第5页
已阅读5页,还剩21页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

沪科版8年级下册期末测试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、满足下列条件的三角形中,不是直角三角形的是()A.三内角之比为3:4:5 B.三边长的平方之比为1:2:3C.三边长之比为7:24:25 D.三内角之比为1:2:32、在一次科技作品制作比赛中,某小组八件作品的成绩(单位:分)分别是:7,10,9,8,7,9,9,8.对这组数据,下列说法正确的是()A.平均数是8 B.众数是8.5 C.中位数8.5 D.极差是53、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名应聘者进行了初步测试,测试成绩如表:应聘者项目甲乙丙丁学历8976经验6488工作态度7765如果将学历、经验和工作态度三项得分依次按30%,30%,40%的比例确定各人的最终得分,那么最终得分最高的是()A.甲 B.乙 C.丙 D.丁4、如图,在矩形ABCD中,AB=1,BC=2,将其折叠,使AB边落在对角线AC上,得到折痕AE,则点E到点B的距离为()A. B. C. D.5、下列四组数中,不能构成直角三角形边长的一组数是()A.0.3,0.4,0.5 B.1,, C.14,16,20 D.6,8,106、下列条件中,不能判定一个四边形是平行四边形的是()A.一组对边平行且相等 B.对角线互相平分C.两组对角分别相等 D.一组对边平行,另一组对边相等7、为了绿化荒山,某地区政府提出了2028年荒山的森林覆盖率达到45%的目标.已知2019年该地区森林覆盖率已达到34%,若要在2021年使该地区荒山的森林覆盖率达到38%.设从2019年起该地区荒山的森林覆盖率的年平均增长率为,则可列方程为()A. B.C. D.8、若在实数范围内有意义,则x的取值范围是()A.x≥ B.x≤ C.x> D.x≠第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、设a,b,c,d是四个不同的实数,如果a,b是方程的两根,c,d是方程的两根,那么的值为______.2、当等式成立时,=___.3、已知正比例函数的图象经过第一、三象限,且经过点(k,k+2),则k=________.4、已知一组数据:7、a、6、5、5、7的众数为7,则这组数据的中位数是_________.5、如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角6、已知一个多边形的每一个外角都是,则这个多形是_____边形.7、有3人患了流感,经过两轮传染后共有192人患流感,设每轮传染中平均一个人传染了x人,则可列方程为____________.三、解答题(6小题,每小题10分,共计60分)1、用适当的方法解下列方程:(1).(2).2、如图,在中,,是的中线,点是的中点,过点作CF∥AB交的延长线于点,连接.请判断四边形的形状,并加以证明.3、小乾同学提出一种新图形定义:一组对边相等且垂直的四边形叫等垂四边形.如图1,四边形ABCD中,AB=CD,AB⊥CD,四边形ABCD即为等垂四边形,其中相等的边AB、CD称为腰,另两边AD、BC称为底.(1)性质初探:小乾同学探索了等垂四边形的一些性质,请你补充完整:①等垂四边形两个钝角的和为°;②若等垂四边形的两底平行,则它的最小内角为°.(2)拓展研究:①小坤同学发现两底中点的连线与腰长有特定的关系,如图2,M、N分别为等垂四边形ABCD的底AD、BC的中点,试探索MN与AB的数量关系,小坤的想法是把其中一腰绕一个中点旋转180°,请按此方法求出MN与AB的数量关系,并写出AB与MN所在直线相交所成的锐角度数.②如图1,等垂四边形ABCD的腰为AB、CD,AB=CD=AD=3,则较长的底BC长的取值范围是.(3)实践应用:如图3,直线l1,l2是两条相互垂直的公路,利用三段围栏AB、BC、AD靠路边按如图方式围成一块四边形种植园,第四条边CD做成一条隔离带,已知AB=250米,BC=240米,AD=320米,此隔离带最长为多少米?4、已知是方程的一个根,则______,另一个根为______.5、在长方形ABCD中,AB=4,BC=8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q均不与顶点重合),PQ=2(1)如图①,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:AP=QE;(2)如图②,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP的长;(3)如图③,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP=3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积.6、随着人们对健康生活的追求,有机食品越来越受到人们的喜爱和追捧,某商家打算花费40000元购进一批有机绿色农产品存放于冷库.实际购买时供货商促销,可以在标价基础上打8折购进这批产品,结果实际比计划多购进400千克.(1)实际购买时,该农产品多少元每千克?(2)据预测,该农产品的市场价格在实际购买价的基础上每天每千克上涨0.5元,已知冷库存放这批农产品,每天需要支出各种费用合计为280元,同时,平均每天将有8千克损坏不能出售.则将这批农产品存放多少天后一次性全部出售,该公司可获得利润19600元?-参考答案-一、单选题1、A【分析】根据勾股定理逆定理及三角形内角和可直接进行排除选项.【详解】解:A、由三内角之比为3:4:5可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为5×15°=75°,故不是直角三角形,符合题意;B、由三边长的平方之比为1:2:3可知该三角形满足勾股定理逆定理,即1+2=3,所以是直角三角形,故不符合题意;C、由三边长之比为7:24:25可设这个三角形的三边长分别为,则有,所以是直角三角形,故不符合题意;D、由三内角之比为1:2:3可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为3×30°=90°,是直角三角形,故不符合题意;故选A.【点睛】本题主要考查勾股定理逆定理及三角形内角和,熟练掌握勾股定理逆定理及三角形内角和是解题的关键.2、C【分析】计算这组数据的平均数、众数、中位数及极差即可作出判断.【详解】这组数据的平均数为:,众数为9,中位数为8.5,极差为10-7=3,故正确的是中位数为8.5.故选:C【点睛】本题考查了反映一组数据平均数、众数、中位数、极差等知识,正确计算这些统计量是关键.3、A【分析】根据图表数据利用计算加权平均数的方法直接求出甲、乙、丙、丁四名应聘者的加权平均数,两者进行比较即可得出答案.【详解】解:甲的最终得分:8×30%+6×30%+7×40%=7,乙的最终得分:9×30%+4×30%+7×40%=6.7,丙的最终得分:7×30%+8×30%+6×40%=6.9,丁的最终得分:6×30%+8×30%+5×40%=6.2,∴甲>丙>乙>丁,故选A.【点睛】本题考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键.4、C【分析】由于AE是折痕,可得到AB=AF,BE=EF,再求解设BE=x,在Rt△EFC中利用勾股定理列出方程,通过解方程可得答案.【详解】解:矩形ABCD,设BE=x,∵AE为折痕,∴AB=AF=1,BE=EF=x,∠AFE=∠B=90°,Rt△ABC中,∴Rt△EFC中,,EC=2-x,∴,解得:,则点E到点B的距离为:.故选:C.【点睛】本题考查了勾股定理和矩形与折叠问题;二次根式的乘法运算,利用对折得到,再利用勾股定理列方程是解本题的关键.5、C【分析】先分别求出两小边的平方和和最长边的平方,再看看是否相等即可.【详解】解:A.∵0.32+0.42=0.52,∴以0.3,0.4,0.5为边能组成直角三角形,故本选项不符合题意;B.∵12+()2=()2,∴以1,,为边能组成直角三角形,故本选项不符合题意;C.∵142+162≠202,∴以14,16,20为边不能组成直角三角形,故本选项符合题意;D.∵62+82=102,∴以6,8,10为边能组成直角三角形,故本选项不符合题意;故选:C.【点睛】本题考查了勾股定理的逆定理,注意:如果一个三角形的两条边a、b的平方和等于第三边c的平方,那么这个三角形是直角三角形.6、D【分析】根据平行四边形的判定方法一一判断即可;【详解】解:A、一组对边平行且相等的四边形是平行四边形,故本选项不符合题意;B、对角线互相平分的四边形是平行四边形,故本选项不符合题意;C、两组对角分别相等的四边形是平行四边形,故本选项不符合题意;D、一组对边平行,另一组对边相等的四边形还可能是等腰梯形,本选项符合题意;故选:D.【点睛】本题考查平行四边形的判定方法,解题的关键是熟练掌握平行四边形的判定方法.7、C【分析】增长率问题,一般用增长后的量=增长前的量×(1+增长率),参照本题,如果设年平均增长率为x,根据“2019年我市森林覆盖率已达到34%,要在2021年使全市森林覆盖率达到38%”,可列出方程.【详解】解:由题意可得:2020年,全市森林覆盖率为:34%(1+x);2021年,全市森林覆盖率为:34%(1+x)(1+x)=34%(1+x)2;所以可列方程为34%(1+x)2=38%;故选C.【点睛】本题考查求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.8、A【分析】由题意根据二次根式的性质即被开方数大于或等于0,进而解不等式即可.【详解】解:根据题意得:3x-1≥0,解得:x≥.故选:A.【点睛】本题考查二次根式的性质,注意掌握二次根式的被开方数是非负数.二、填空题1、【分析】由根与系数的关系得,,两式相加得,根据一元二次方程根的定义可得,可得,同理可得,两式相减即可得,根据,求得,进而可得【详解】解:由根与系数的关系得,,两式相加得.因为是方程的根,所以,又,所以①同理可得②①-②得.因为,所以,所以.【点睛】本题考查了一元二次方程根与系数的关系,一元二次方程根的定义,根据等式的性质变形是解题的关键.2、##【分析】由等式成立,得到再化简二次根式即可.【详解】解:等式成立,由①得:,由②得:,所以,所以原式故答案为:【点睛】本题考查的是二次根式有意义的条件,二次根式的化简,掌握“公式中二次根式有意义的条件”是化简二次根式的关键.3、2【分析】先根据正比例函数的图象可得,再将点代入函数的解析式可得一个关于的一元二次方程,解方程即可得.【详解】解:正比例函数的图象经过第一、三象限,,由题意,将点代入函数得:,解得或(舍去),故答案为:2.【点睛】本题考查了正比例函数的图象、一元二次方程的应用,熟练掌握正比例函数的图象特点是解题关键.4、6.5【分析】一组数据中出现次数最多的数据是这组数据的众数,根据众数的定义求解再把这组数据按照从小到大重新排列,求解最中间两个数的平均数可得这组数据的中位数.【详解】解:一组数据:7、a、6、5、5、7的众数为7,则这组数据按照从小到大的顺序排列为:5,5,6,7,7,7,所以这组数据的中位数为:故答案为:【点睛】本题考查的是众数与中位数的含义,由众数为7得到是解本题的关键.5、30【分析】根据勾股定理可得:正方形的面积正方形的面积正方形的面积,正方形的面积正方形的面积正方形的面积,从而得到正方形的面积正方形的面积正方形的面积,即可求解.【详解】解:如图,由勾股定理得,正方形的面积正方形的面积正方形的面积,同理,正方形的面积正方形的面积正方形的面积,正方形的面积正方形的面积正方形的面积.故答案为:30【点睛】本题主要考查了勾股定理的应用,熟练掌握勾股定理:直角三角形的两直角边的平方和等于斜边的平方是解题的关键.6、八【分析】根据多边形的外角和等于360°进行解答即可得.【详解】解:,故答案为:八.【点睛】本题考查了多边形的外角和,解题的关键是熟记多边形的外角和等于.7、【分析】根据题意可得,每轮传染中平均一个人传染了x个人,经过一轮传染之后有人感染流感,两轮感染之后的人数为192人,依此列出二次方程即可.【详解】解:设每轮传染中平均一个人传染了x个人,依题可得:,故答案为:.【点睛】本题考查了由实际问题与一元二次方程,关键是得到两轮传染数量关系,从而可列方程求解.三、解答题1、(1)x1=5,x2=-1;(2)x1=4,x2=-2.【分析】(1)根据直接开方法即可求出答案;(2)根据因式分解法即可求出答案.(1)解:∵(x-2)2=9,∴x-2=±3,∴x=2±3,∴x1=5,x2=-1;(2)解:∵x2−2x−8=0,因式分解得(x-4)(x+2)=0,∴x-4=0或x+2=0,∴x1=4,x2=-2.【点睛】本题主要考查了解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键.2、四边形BFCD是菱形,理由见详解【分析】根据直角三角形斜边中线等于斜边的一半,可得,再由点是的中点,可得AE=EF,然后根据CF∥AB,可得∠AFC=∠DAE,∠FCE=∠ADE,从而得到△ADE≌△FCE,进而得到CF=AD,可得四边形BFCD是平行四边形,再由CF=CD,即可求解.【详解】解:四边形BFCD是菱形,理由如下:在中,∵,是的中线,∴,∵点是的中点,∴AE=EF,∵CF∥AB,∴∠AFC=∠DAE,∠FCE=∠ADE,∴△ADE≌△FCE,∴CF=AD,∴CF=BD=CD,∵CF∥AB,∴四边形BFCD是平行四边形,∵CF=CD,∴四边形BFCD是菱形.【点睛】本题主要考查了菱形的判定,全等三角形的判定和性质,直角三角形的性质,熟练掌握直角三角形斜边中线等于斜边的一半是解题的关键.3、(1)①270;②45;(2)①,AB与MN所在直线相交所成的锐角度数为45°,理由见解析;②;(3)650米【分析】(1)①延长CD与BA延长线交于点P,则∠P=90°,可以得到∠B+∠C=90°,再由∠B+∠C+∠BAD+∠ADC=360°,即可得到∠BAD+∠ADC=270°;②延长CD交BA延长线于P,过点D作DE∥AB交BC于E,则∠DEC=∠B,由等垂四边形的两底平行,即AD∥BC,可证四边形ABED是平行四边形,得到DE=AB,再由AB=CD,AB⊥CD得到DE=CD,DE⊥CD,则∠DEC=∠C=45°,即四边形ABCD的最小内角为45°;(2)①延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180°得到DE,连接CE,BE,由旋转的性质可得:MB=ME,AB=DE,∠ABM=∠DEM,则CD=AB=DE,AB∥DE,即可推出∠DEC=∠DCE,∠EDC=∠EDP=∠BPD=90°,由勾股定理得到,∠DEC=∠DCE=45°,再证MN是△BCE的中位线,得到,MN∥CE,则∠NQC=∠DCE=45°,由此即可推出直线AB与直线MN所在直线相交所成的锐角度数为45°;②延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得∠APD=90°,则,,即,由(2)①可知,即可推出,再由∠PMN随着PA减小而减小,当点P与点A重合时,∠PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,则;(3)仿照(2)②进行求解即可.(1)解:①如图所示,延长CD与BA延长线交于点P,∵四边形ABCD为等垂四边形,即AB=CD,AB⊥CD,∴∠P=90°,∴∠B+∠C=90°,∵∠B+∠C+∠BAD+∠ADC=360°,∴∠BAD+∠ADC=270°,故答案为:270;②如图所示,延长CD交BA延长线于P,过点D作DE∥AB交BC于E,∴∠DEC=∠B,∵等垂四边形的两底平行,即AD∥BC,∴四边形ABED是平行四边形,∴DE=AB,又∵AB=CD,AB⊥CD∴DE=CD,DE⊥CD,∴∠DEC=∠C=45°,∴四边形ABCD的最小内角为45°,故答案为:45;(2)解:①,AB与MN所在直线相交所成的锐角度数为45°,理由如下:延长CD交BA延长线与P,交NM延长线与Q,NM延长线与BA延长线交于点F,将腰AB绕中点M旋转180°得到DE,连接CE,BE,∵四边形ABCD是等垂四边形,∴AB=CD,AB⊥CD,∴∠BPC=90°,∵M是AD的中点,∴MA=MD,由旋转的性质可得:MB=ME,AB=DE,∠ABM=∠DEM,∴CD=AB=DE,AB∥DE,∴∠DEC=∠DCE,∠EDC=∠EDP=∠BPD=90°,∴,∠DEC=∠DCE=45°,又∵M、N分别是BE,BC的中点,∴MN是△BCE的中位线,∴,MN∥CE,∴∠NQC=∠DCE=45°,∵∠BPC=90°,∴∠QPF=90°,∴∠QFP=45°,∴直线AB与直线MN所在直线相交所成的锐角度数为45°;②如图所示,延长CD交BA延长线于P,取AD,BC的中点,M、N连接PM,PN,同理可得∠APD=90°,∴,,即,由(2)①可知,∵,∴,又∵∠PMN随着PA减小而减小,当点P与点A重合时,∠PMN最小,此时PN最小,即BC最小,即此时A、D、C三点共线由勾股定理得:,∴故答案为:;(3)解:如图所示,取AB,CD的中点M,N,连接MN,作点C关于M的对称点E,连接CE,AE,DE,设直线l1与直线l2交于点P,由(2)可知,AE∥BC,AE=BC=240米,∵l1⊥l2,∴∠APB=∠PAE=90°,∴∠DAE=90°,∴米,∵M、N分别是CE,CD的中点,∴MN是△CED的中位线,∴米,MN∥DE,∵M为AB的中点,∠APB=90°,∴米,同理可得,即∴米,∴米,∴隔离带最长为650米.【点睛】本题主要考查了等腰直角三角形的性质与判定,三角形中位线定理,直角三角形斜边上的中线,勾股定理,三角形三边的关系等等,解题的关键在于能够正确理解题意作出辅助线求解.4、76【分析】可将该方程的已知根代入两根之积公式和两根之和公式列出方程组,解方程组即可求出a值和方程的另一根.【详解】解:设方程的另一根为x1,又∵x=1是方程x2-ax+6=0的一个根,解得x1=6,a=7.故答案为:7,6.【点睛】此题也可先将x=1代入方程中求出a的值,再利用根与系数的关系求方程的另一根.5、(1)见解析(2)4(3)4【分析】(1)由“SAS”可证△ABP≌△QCE,可得AP=QE;(2)要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可.为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明∠GEH=45°,再由CQ=EC即可求出BP的长度;(3)要使四边形PQNM的周长最小,由于PQ是定值,只需PM+MN+QN的值最小即可,作点P关于AD的对称点F,作点Q关于CD的对称点H,连接FH,交AD于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,由面积和差关系可求解.(1)解:证明:∵四边形ABCD是矩形,∴CD=AB=4,BC=AD=8,∵点E是CD的中点,点Q是BC的中点,∴BQ=CQ=4,CE=2,∴AB=CQ,∵PQ=2,∴BP=2,∴BP=CE,又∵∠B=∠C=90°,∴△ABP≌△QCE(SAS),∴AP=QE;(2)如图②,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论