难点解析-青岛版8年级数学下册期末试卷附参考答案详解(研优卷)_第1页
难点解析-青岛版8年级数学下册期末试卷附参考答案详解(研优卷)_第2页
难点解析-青岛版8年级数学下册期末试卷附参考答案详解(研优卷)_第3页
难点解析-青岛版8年级数学下册期末试卷附参考答案详解(研优卷)_第4页
难点解析-青岛版8年级数学下册期末试卷附参考答案详解(研优卷)_第5页
已阅读5页,还剩24页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛版8年级数学下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、小明用四根长度相同的木条制作了能够活动的菱形学具,他先活动学具成为图1所示菱形,并测得∠B=60°,对角线AC=10cm,接着活动学具成为图2所示正方形,则图2中对角线AC的长为()A.10cm B.20cm C.30cm D.cm2、在数轴上表示不等式的解集,正确的是(

)A. B. C. D.3、比较大小:﹣(

)﹣.A.< B.> C.= D.≤4、如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为(

)A. B. C. D.5、一次函数的图象大致是(

)A. B.C. D.6、下列各数中,无理数是()A. B.3.14 C. D.7、如图,在△ABC中,点D、E分别是AB、AC的中点,AC=10,点F是DE上一点.DF=1.连接AF,CF.若∠AFC=90°,则BC的长是()A.18 B.16 C.14 D.128、菱形的周长为20cm,两个相邻的内角的度数之比为1:2,则较短的对角线长度是(

)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如图所示放置,点A1,A2,A3,和点C1,C2,C3,…,分别在直线y=kx+b(k>0)和x轴上,已知点B1,B2,B3,B4的坐标分别为(1,1),(3,2),(7,4),(15,8),则Bn的坐标为_____2、若直线y=(2m+4)x+m-3平行于直线y=-x,则m的值为________.3、如图,四边形ABCD是边长为4的正方形,点E在边AD上,以CE为直角边作等腰直角△CEF(点D,点F在直线CE的同侧),连接BF,若AE=1,则BF=_____.4、点(—3,—4)关于原点对称的点坐标是____.5、如图,F为正方形ABCD的边CD上一动点,AB=2,连接BF,过A作AH⊥BF交BC于H,交BF于G,连接CG,当CG为最小值时,CH的长为_____.6、已知函数y1=-2x与y2=x+b的图像相交于点A(-1,2),则关于x的不等式-2x>x+b的解集是_____.7、计算:﹣3﹣1=_____.三、解答题(7小题,每小题10分,共计70分)1、求下列各式中的(1)(2)2、如图,四边形ABCD是正方形,点E在BC延长线上,DF⊥AE于点F,点G在AE上,且∠ABG=∠E.求证:AG=DF.3、如图所示(1)写出ABC三顶点的坐标;(2)在图上描出点A1(3,3),B1(2,﹣2),C1(4,﹣1),并说明ABC与A1B1C1的位置关系.4、如图所示,一桥洞的上边是半圆,下边是长方形.已知半圆的直径为2m,长方形的另一边是1m,有一辆厢式小货车,高1.5米,宽1.6米,这辆小货车能否通过此桥洞?通过计算说明理由.5、计算:6、如图,已知△ABC是锐角三角形(AC<AB)(1)①请在图1中用圆规和无刻度的直尺作出点O,使O到△ABC三边距离相等;(不写作法,保留作图痕迹)②在①的条件下,若AB=15,AC=13,BC=14,则△ABC中BC边上的高=______,O到△ABC三边距离=______.(2)在△ABC中,若点P在△ABC内部(含边界)且满足PC≤PB≤PA,请在图2中用圆规和无刻度的直尺作出所有符合条件的点P组成的区域(用阴影表示).(不写作法,保留作图痕迹)7、如图1,直线yx+m与坐标轴交于点A,B,点C(a,0)在线段OA上由O向A运动,CD⊥OA交AB于D,△A′DC与△ADC关于直线CD成轴对称,设△A′DC与△AOB重合部分的面积为S,S关于a的图象如图2所示,部分被污染.(1)写出图1中的点A的坐标,并求出m的值.(2)求点A′与坐标原点O重合时,点D的坐标.(3)写出当点A′在线段AO上时,S关于a的函数表达式.(4)求S时,所有符合条件的a的值.-参考答案-一、单选题1、D【解析】【分析】分别连接图1与图2中的AC,证明图1中△ABC是等边三角形,求出BC,利用勾股定理求出图2中AC.【详解】解:分别连接图1与图2中的AC,在图1中:∵四边形ABCD是菱形,∴AB=BC,∵∠B=60°,∴△ABC是等边三角形,∴AB=AC=10cm,在图2中,BC=AB=10cm,∠B=90°,∴cm,故选:D.【点睛】此题考查了菱形的性质,正方形的性质,等边三角形的判定及性质,勾股定理,解题的关键是理解两图中的边长相等.2、C【解析】【分析】先解一元一次不等式,再在数轴上表示解集即可.【详解】解:,在数轴上表示其解集如下:故选C【点睛】本题考查的是一元一次不等式的解法,在数轴上表示不等式的解集,掌握“表示解集时空心圈与实心点的使用以及大于向右拐,小于向左拐”是解本题的关键.3、B【解析】【分析】直接利用负实数比较大小的方法,进而将两数平方比较即可.【详解】解:∵(−)2=2.1,(−)2==2.25,∴2.25>2.1,∴−>−.故选:B.【点睛】此题主要考查了实数大小比较,正确将两数平方再比较大小是解题关键.4、C【解析】【分析】由矩形的性质可得OA=OC=OB=OD=,再由三角形的面积和差关系求解即可.【详解】解:∵AB=3,BC=4,∴矩形ABCD的面积为3×4=12,BD=AC=,∴OA=OC=OB=OD=,∴,∵,∴,∴.故选:C.【点睛】本题考查了矩形的性质,三角形的面积关系,正确理解并掌握矩形的性质是解题的关键.5、C【解析】【分析】根据一次函数的k、b的符号确定其经过的象限即可确定答案.【详解】解:∵一次函数中,<0,∴一次函数的图象经过一、二、四象限.故选C.【点睛】此题主要考查一次函数图象,熟练掌握k、b的符号与图象的位置关系是解题关键.6、D【解析】【分析】根据无理数是无限不循环小数进行逐项判断即可.【详解】解:A、-2是有理数,不符合题意;B、3.14是有理数,不符合题意;C、是有理数,不符合题意;D、是无理数,符合题意,故选:D.【点睛】本题主要考查无理数,解答的关键掌握无理数与有理数的概念:有理数包含整数和分数、无理数为无限不循环小数.7、D【解析】【分析】根据直角三角形的性质求出EF,进而求出DE,根据三角形中位线定理计算,得到答案.【详解】解:∵∠AFC=90°,点E是AC的中点,AC=10,∴EF=AC=×10=5,∵DF=1,∴DE=DF+EF=6,∵点D、E分别是AB、AC的中点,∴BC=2DE=12,故选:D.【点睛】本题考查的是直角三角形的性质、三角形中位线定理,掌握三角形的中位线平行于第三边,并且等于第三边的一半是解题的关键.8、D【解析】【分析】根据已知可求得菱形的边长及其两内角的度数,得出较短的对角线与菱形两边围成的三角形是等边三角形,即可得出结果.【详解】如图所示:∵菱形的周长为20cm,∴菱形的边长为5cm,∵两邻角之比为1:2,∴较小角为60°,∴,∵AB=5cm,,∴为等边三角形,∴cm,∴较短的对角线为5cm,故选D.【点睛】本题考查了菱形的性质、等边三角形的判定与性质等知识;熟练掌握菱形的性质与等边三角形的判定是解题的关键.二、填空题1、(2n-1,2n-1)【解析】【分析】由图和条件可知A1(0,1)A2(1,2)A3(3,4),由此可以求出直线为y=x+1,Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标数列为An=2n-1-1,所以纵坐标为(2n-1),然后就可以求出Bn的坐标.【详解】解:∵点B1(1,1),B2(3,2),∴A1(0,1),A2(1,2),A3(3,4),∵直线y=kx+b(k>0)经过A1(0,1),A2(1,2),则,解得∴直线y=kx+b(k>0)为y=x+1,∴Bn的横坐标为An+1的横坐标,纵坐标为An的纵坐标,又An的横坐标为2n-1-1,所以纵坐标为2n-1,∴Bn的坐标为(2n-1,2n-1).故答案为:(2n-1,2n-1).【点睛】本题主要考查函数图象上点的坐标特征,解决这类问题首先要从简单图形入手,抓住随着“编号”或“序号”增加时,后一个图形与前一个图形相比,在数量上增加(或倍数)情况的变化,找出数量上的变化规律,从而推出一般性的结论.2、【解析】【分析】两直线平行时,它们的自变量系数k值相等,即可得出答案.【详解】解:∵直线y=(2m+4)x+m−3平行于直线y=−x,∴2m+4=−1,解得m=.故答案为:.【点睛】本题考查了两直线的相交与平行问题,解题的关键是理解两直线平行时,自变量系数k值相等.3、【解析】【分析】过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,则FM=AH,AM=FH,证明△EFH≌△CED,得出FH=DE=3,EH=CD=4,求出BM=AB+AM=7,FM=AE+EH=5,由勾股定理即可得出答案.【详解】如图,过F作FH⊥AD交AD的延长线于点H,作FM⊥AB于M,则FM=AH,AM=FH,∵AD=4,AE=1,∴DE=3,过点C和点F作GC⊥EC,GF⊥EF.于点C,F,交于点G,∵以CE为直角边作等腰直角△CEF,∠FHE=90°∴AD=CD=4,EF=CE,∠ADC=∠DHF=∠CEF=90°,∴∠FEH=∠CED.在△EFH和△ECD中,∴△EFH≌△ECD(AAS).∴FH=DE=3,EH=CD=4,即点F到AD的距离为3:∴BM=AB+AM=4+3=7,FM=AE+EH=5,∴BF===故答案为:【点睛】本题考查了正方形的性质,全等三角形的判定与性质,勾般定理等知识,属于基础题,作辅助线构建直角三角形全等是解决问题的关键4、(3,4)【解析】【分析】根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,据此分析即可.【详解】解:点(—3,—4)关于原点对称的点坐标是(3,4)故答案为:(3,4)【点睛】本题考查了原点对称的两个点的特征,掌握关于原点对称的两个点,横坐标、纵坐标分别互为相反数是解题的关键.5、##【解析】【分析】取AB的中点O,连接OG,OC,根据的长为定值,当O,G,C共线时,CG的值最小,证明CF=CG=BH即可解决问题.【详解】解:如图,取AB的中点O,连接OG,OC.四边形ABCD是正方形,ABC=90°,AB=2,OB=OA=1,,AH⊥BF,AGB=90°,AO=OB,OG=AB=1,,当O、G、C共线时,CG的值最小,最小值=,此时如图,OB=OG=1,OBG=OGB,ABCD,OBG=CFG,OGB=CGF,CGF=CFG,CF=CG=,ABH=BCF=AGB=90°,∠BAH+∠ABG=90°,∠ABG+∠CBF=90°,∠BAH=∠CBF,AB=BC,△ABH△BCF(ASA),BH=CF=,CH=BC-BH=2-()=3-,故答案为:【点睛】本题考查正方形的性质,全等三角形的判定和性质,直角三角形斜边中线的性质,等腰三角形的判定和性质等知识,解题的关键是学会添加常用辅助线.6、x<-1【解析】【分析】在同一坐标系中画出两个函数的图象,根据图象即可得出答案.【详解】解:函数y1=-2x与y2=x+b的图象如图所示:要满足-2x>x+b,即y1>y2,则图象上两直线交点的左边符合题意,即x<-1,故答案为:x<-1.【点睛】此题考查了一元一次不等式与一次函数图象的关系,用一次函数的函数思想求不等式的解集是比较常见的题型,关键在于理解不等关系反映在函数图象上的几何意义.7、-1【解析】【分析】根据立方根和负整数指数幂的计算法则求解即可.【详解】解:,故答案为:-1.【点睛】本题主要考查了立方根和负整数指数幂,熟知相关计算法则是解题的关键.三、解答题1、(1)或;(2)【解析】【分析】(1)先移项,再合并同类项,再根据平方根的定义求解;(2)先根据立方根的定义开立方,再解方程即可求解.(1),,,或;(2),,.【点睛】本题考查了立方根,平方根,解题的关键是熟练掌握平方根与立方根的定义.2、见解析【解析】【分析】根据正方形的性质得到,,,再证明,,然后利用“”可判断,从而得到结论.【详解】证明:四边形是正方形,,,,,,,,,,,,在和中,,,.【点睛】本题考查了正方形的性质,全等三角形的判定与性质,解题的关键是掌握正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角.3、(1)A(﹣2,2),B(﹣3,﹣3),C(﹣1,﹣2)(2)描点见解析,位置关系:ABC向右平移5个单位,再向上平移1个单位得到A1B1C1【解析】【分析】(1)结合直角坐标系即可得出的A,B,C坐标;(2)先根据题意在直角坐标系里描出点A1(3,3),B1(2,﹣2),C1(4,﹣1),再根据平移规律即可得出结论.(1)A(﹣2,2),B(﹣3,﹣3),C(﹣1,﹣2);(2)如图,位置关系:ABC向右平移5个单位,再向上平移1个单位得到A1B1C1.【点睛】本题考查了平面直角坐标系中点的坐标特征以及平移规律,正确在平面直角坐标系中描出对应点是解题的关键.4、能,理由见解析【解析】【分析】设半圆的圆心为O,于是得到OA=×1.6=0.8(米).过点A作直径的垂线,交半圆于点B,交长方形另一边于点C,根据勾股定理即可得到答案.【详解】解:设半圆的圆心为O,(米).过点A作直径的垂线,交半圆于点B,交长方形另一边于点C.在中,由勾股定理可得:,即.所以米.所以(米).由于1.6米>1.5米,所以小货车能通过此桥洞.【点睛】本题考查了勾股定理的应用:建立数学模型,善于观察题目的信息是解题的关键.5、【解析】【分析】先进行二次根式的化简、去绝对值、计算零指数幂、负整数指数幂,然后进行加减运算即可.【详解】解:原式.【点睛】本题考查了绝对值,二次根式的化简,零指数幂,负整数指数幂.解题的关键在于正确的计算.6、(1)①见解析;②12,4(2)见解析【解析】【分析】(1)①作两内角的平分线,得交点O;②作边上的高,设,则,在中,,在中,根据勾股定理建立方程,求得,进而勾股定理求得,根据等面积法求O到△ABC三边距离即可;(2)作的垂直平分线,根据满足PC≤PB≤PA,由PB≤PA,点点离点更近,在的垂直平分线靠进点部分,由PC≤PB,点点离点更近,在垂直平分线靠进点的部分,以及与围成部分,包括边界.(1)①如图所示,即为所

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论