




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版8年级数学下册《平行四边形》专项攻克考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(5小题,每小题4分,共计20分)1、已知菱形的边长为6,一个内角为60°,则菱形较长的对角线长是()A. B. C.3 D.62、如图,的对角线交于点O,E是CD的中点,若,则的值为()A.2 B.4 C.8 D.163、已知,四边形ABCD的对角线AC和BD相交于点O.设有以下条件:①AB=AD;②AC=BD;③AO=CO,BO=DO;④四边形ABCD是矩形;⑤四边形ABCD是菱形;⑥四边形ABCD是正方形.那么,下列推理不成立的是()A.①④⇒⑥ B.①③⇒⑤ C.①②⇒⑥ D.②③⇒④4、下列说法正确的是()A.平行四边形的对角线互相平分且相等 B.矩形的对角线相等且互相平分C.菱形的对角线互相垂直且相等 D.正方形的对角线是正方形的对称轴5、在△ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若△ABD、△EFC的面积分别为21、7,则的值为()A. B. C. D.第Ⅱ卷(非选择题80分)二、填空题(5小题,每小题6分,共计30分)1、如图,正方形纸片ABCD的边长为12,E是边CD上一点,连接AE.折叠该纸片,使点A落在AE上的G点,并使折痕经过点B,得到折痕BF,点F在AD上.若,则GE的长为__________.2、如图,平面直角坐标系中,有,,三点,以A,B,O三点为顶点的平行四边形的另一个顶点D的坐标为______.3、如图,在矩形ABCD中,AD=3AB,点G,H分别在AD,BC上,连BG,DH,且,当=_______时,四边形BHDG为菱形.4、如图,平行四边形ABCD中,对角线AC、BD交于点O,M、N分别为AB、BC的中点,若OM=1.5,ON=1,则平行四边形ABCD的周长是________.5、如图,在平行四边形ABCD中,AB=4,BC=5,以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是_____.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC中,点D,E分别是AC,AB的中点,点F是CB延长线上的一点,且CF=3BF,连接DB,EF.(1)求证:四边形DEFB是平行四边形;(2)若∠ACB=90°,AC=12cm,DE=4cm,求四边形DEFB的周长.2、如图所示,正方形中,点E,F分别为BC,CD上一点,点M为EF上一点,D,M关于直线AF对称.连结DM并延长交AE的延长线于N,求证:.3、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形.(1)如图①,在各边相等的四边形ABCD中,当AC=BD时,四边形ABCD正四边形;(填“是”或“不是”)(2)如图②,在各边相等的五边形ABCDE中,AC=CE=EB=BD=DA,求证:五边形ABCDE是正五边形;(3)如图③,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由.4、如图,△ABC中,点D是边AC的中点,过D作直线PQ∥BC,∠BCA的平分线交直线PQ于点E,点G是△ABC的边BC延长线上的点,∠ACG的平分线交直线PQ于点F.求证:四边形AECF是矩形.5、如图,是的中位线,延长到,使,连接.求证:.
-参考答案-一、单选题1、B【解析】【分析】根据一个内角为60°可以判断较短的对角线与两邻边构成等边三角形,求出较长的对角线的一半,再乘以2即可得解.【详解】解:如图,菱形ABCD,∠ABC=60°,∴AB=BC,AC⊥BD,OB=OD,∴△ABC是等边三角形,菱形的边长为6,∴AC=6,∴AO=AC=3,在Rt△AOB中,BO===3,∴菱形较长的对角线长BD是:2×3=6.故选:B.【点睛】本题考查了菱形的性质和勾股定理,等边三角形的判定,解题关键是熟练运用菱形的性质和等边三角形的判定求出对角线长.2、B【解析】【分析】根据平行四边形的性质可得,S△BOC=S△AOD=S△COD=S△AOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得S△DOE=4,进而可得答案.【详解】解:∵四边形ABCD是平行四边形,,∴S△BOC=S△AOD=S△COD=S△AOB=8,∵点E是CD的中点,∴S△DOE=S△COD=4,故选:B.【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键.3、C【解析】【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可.【详解】解:A、①④可以说明,一组邻边相等的矩形是正方形,故A正确.B、③可以说明四边形是平行四边形,再由①,一组临边相等的平行四边形是菱形,故B正确.C、①②,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误.D、③可以说明四边形是平行四边形,再由②可得:对角线相等的平行四边形为矩形,故D正确.故选:C.【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键.4、B【解析】【分析】根据平行四边形、矩形、菱形、正方形的性质定理判断即可.【详解】解:平行四边形的对角线互相平分,不一定相等,A错误;矩形的对角线相等且互相平分,B正确;菱形的对角线互相垂直,不一定相等,C错误;正方形的对角线所在的直线是正方形的对称轴,D错误;故选:B.【点睛】本题考查了命题的真假判断,掌握平行四边形、矩形、菱形、正方形的性质是解题的关键.5、B【解析】【分析】过点A作△ABC的高,设为x,过点E作△EFC的高为,可求出,,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解.【详解】解:过点A作△ABC的高,设为x,过点E作△EFC的高为,∴,∴,,∵点E、F分别是线段AC、CD的中点,∴,∴,∵,∴,∴,过点D作DM⊥AB,DN⊥AC,∵AD为平分线,∴DM=DN,∵,∴,即:∴,故选:B.【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出.二、填空题1、##【解析】【分析】由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,先证△ABF≌△DAE,推出AF的长,再利用勾股定理求出BF的长,最后在Rt△ABF中利用面积法可求出AH的长,可进一步求出AG的长,GE的长.【详解】解:∵四边形ABCD为正方形,∴AB=AD=12,∠BAD=∠D=90°,由折叠及轴对称的性质可知,△ABF≌△GBF,BF垂直平分AG,∴BF⊥AE,AH=GH,∴∠BAH+∠ABH=90°,又∵∠FAH+∠BAH=90°,∴∠ABH=∠FAH,∴△ABF≌△DAE(ASA),∴AF=DE=5,在Rt△ABF中,BF==13,S△ABF=AB•AF=BF•AH,∴12×5=13AH,∴AH=,∴AG=2AH=,∵AE=BF=13,∴GE=AE-AG=13-=,故答案为:.【点睛】本题考查了正方形的性质,轴对称的性质,全等三角形的判定与性质,勾股定理,面积法求线段的长度等,解题关键是能够灵活运用正方形的性质和轴对称的性质.2、(9,4)、(-3,4)、(3,-4)【解析】【分析】根据平行四边形的性质得出AD=BO=6,AD∥BO,根据平行线得出A和D的纵坐标相等,根据B的横坐标和BO的值即可求出D的横坐标.【详解】∵平行四边形ABCD的顶点A、B、O的坐标分别为(3,4)、(6,0)、(0,0),∴AD=BO=6,AD∥BO,∴D的横坐标是3+6=9,纵坐标是4,即D的坐标是(9,4),同理可得出D的坐标还有(-3,4)、(3,-4).故答案为:(9,4)、(-3,4)、(3,-4).【点睛】本题考查了坐标与图形性质和平行四边形的性质,注意:平行四边形的对边平行且相等.3、【解析】【分析】设则再利用矩形的性质建立方程求解从而可得答案.【详解】解:四边形BHDG为菱形,设AD=3AB,设则矩形ABCD,解得:故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.4、10【解析】【分析】根据平行四边形的性质可得BO=DO,AD=BC,AB=CD,再由条件M、N分别为AB、BC的中点可得MO是△ABD的中位线,NO是△BCD的中位线,再根据三角形中位线定理可得AD、DC的长.【详解】解:∵四边形ABCD是平行四边形,∴BO=DO,AD=BC,AB=CD,∵M、N分别为AB、BC的中点,∴MO=AD,NO=CD,∵OM=1.5,ON=1,∴AD=3,CD=2,∴平行四边形ABCD的周长是:3+3+2+2=10,故答案为:10.【点睛】此题主要考查了平行四边形的性质,以及中位线定理,关键是掌握平行四边形对边相等,对角线互相平分.5、1【解析】【分析】根据基本作图,得到EC是∠BCD的平分线,由AB∥CD,得到∠BEC=∠ECD=∠ECB,从而得到BE=BC,利用线段差计算即可.【详解】根据基本作图,得到EC是∠BCD的平分线,∴∠ECD=∠ECB,∵四边形ABCD是平行四边形,∴AB∥CD,∴∠BEC=∠ECD,∴∠BEC=∠ECB,∴BE=BC=5,∴AE=BE-AB=5-4=1,故答案为:1.【点睛】本题考查了角的平分线的尺规作图,等腰三角形的判定,平行线的性质,平行四边形的性质,熟练掌握尺规作图,灵活运用等腰三角形的判定定理是解题的关键.三、解答题1、(1)见解析;(2)平行四边形DEFB的周长=【分析】(1)证DE是△ABC的中位线,得DE∥BC,BC=2DE,再证DE=BF,即可得出四边形DEFB是平行四边形;(2)由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,得BD=EF,再由勾股定理求出BD=10(cm),即可求解.【详解】(1)证明:∵点D,E分别是AC,AB的中点,∴DE是△ABC的中位线,∴DE//BC,BC=2DE,∵CF=3BF,∴BC=2BF,∴DE=BF,∴四边形DEFB是平行四边形;(2)解:由(1)得:BC=2DE=8(cm),BF=DE=4cm,四边形DEFB是平行四边形,∴BD=EF,∵D是AC的中点,AC=12cm,∴CD=AC=6(cm),∵∠ACB=90°,∴BD==10(cm),∴平行四边形DEFB的周长=2(DE+BD)=2(4+10)=28(cm).【点睛】本题考查了平行四边形的判定与性质、三角形中位线定理、勾股定理等知识;熟练掌握三角形中位线定理,证明四边形DEFB为平行四边形是解题的关键.2、见解析【分析】连结,由对称的性质可知,进而可证,即可得,由∠AON=90°,可得.【详解】证明:连结,、关于对称,∴垂直平分,,∴,∴,,在Rt和Rt中,∴,又,∴,∴.【点睛】本题是四边形综合题,主要考查了轴对称的性质,等腰直角三角形的判定,全等三角形的判定与性质,综合性较强,有一定难度.准确作出辅助线是解题的关键.有关45°角的问题,往往利用全等,构造等腰直角三角形,使问题迅速获解.3、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS证明△ABC≌△BCD≌△CDE≌△DEA≌△EAB得出∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,即可得出结论;(3)由SSS证明△ABE≌△BCA≌△DEC得出∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,由SSS证明△ACE≌△BEC得出∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,由四边形ABCE内角和为360°得出∠ABC+∠ECB=180°,证出AB∥CE,由平行线的性质得出∠ABE=∠BEC,∠BAC=∠ACE,证出∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,即可得出结论;【详解】(1)解:结论:四边形ABCD是正四边形.理由:∵AB=BC=CD=DA,∴四边形ABCD是菱形,∵AC=BD,∴四边形ABCD是正方形.∴四边形ABCD是正四边形.故答案为:是.(2)证明:∵凸五边形ABCDE的各条边都相等,∴AB=BC=CD=DE=EA,在△ABC、△BCD、△CDE、△DEA、△EAB中,∴△ABC≌△BCD≌△CDE≌△DEA≌EAB(SSS),∴∠ABC=∠BCD=∠CDE=∠DEA=∠EAB,∴五边形ABCDE是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形.若AC=BE=CE,五边形ABCDE是正五边形,理由如下:在△ABE、△BCA和△DEC中,,∴△ABE≌△BCA≌△DEC(SSS),∴∠BAE=∠CBA=∠EDC,∠AEB=∠ABE=∠BAC=∠BCA=∠DCE=∠DEC,在△ACE和△BEC中,∴△ACE≌△BEC(SSS),∴∠ACE=∠CEB,∠CEA=∠CAE=∠EBC=∠ECB,∵四边形ABCE内角和为360°,∴∠ABC+∠ECB=180°,∴AB∥CE,∴∠ABE=∠BEC,∠BAC=∠ACE,∴∠CAE=∠CEA=2∠ABE,∴∠BAE=3∠ABE,同理:∠CBA=∠D=∠AED=∠BCD=3∠ABE=∠BAE,∴五边形ABCDE是正五边形;【点睛】本题是
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数字化艺术市场交易平台在艺术品市场创新与产业发展中的品牌建设与营销策略研究报告
- 功能性饮料在篮球赛事中市场推广策略研究分析报告
- 2025年事业单位工勤技能-湖北-湖北公路养护工一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-湖北-湖北仓库管理员一级(高级技师)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-浙江-浙江保育员三级(高级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-河南-河南保健按摩师一级(高级技师)历年参考题库典型考点含答案解析
- 2024版标准并购协议
- 2025年事业单位工勤技能-江西-江西不动产测绘员五级(初级工)历年参考题库含答案解析(5套)
- 2025年事业单位工勤技能-广西-广西造林管护工三级(高级工)历年参考题库典型考点含答案解析
- 2025年事业单位工勤技能-广西-广西热力运行工一级(高级技师)历年参考题库典型考点含答案解析
- 国企投资后评价操作实务
- 《头发头皮生理学》课件
- 中国古代文学史明代文学
- 磨光机使用安全培训
- 有限空间专项安全检查表
- 舰艇损害管制与舰艇损害管制训练
- 广西桂林旅游文化宣传城市介绍文旅科普美食
- 学校栏杆工程施工方案
- 餐厅转包合同范本
- 2024年锅炉操作工(技师)职业鉴定理论考试题库(含答案)
- 外研版(2024)七年级上册英语Starter教学设计
评论
0/150
提交评论