难点详解青岛版8年级下册数学期末试卷【学生专用】附答案详解_第1页
难点详解青岛版8年级下册数学期末试卷【学生专用】附答案详解_第2页
难点详解青岛版8年级下册数学期末试卷【学生专用】附答案详解_第3页
难点详解青岛版8年级下册数学期末试卷【学生专用】附答案详解_第4页
难点详解青岛版8年级下册数学期末试卷【学生专用】附答案详解_第5页
已阅读5页,还剩28页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

青岛版8年级下册数学期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、直线与y轴交于点A,与x轴交于点B,直线与直线关于x轴对称且过点(2,-1),则△ABO的面积为(

)A.8 B.1 C.2 D.42、下列各组数中,不能够作为直角三角形的三边长的是()A.3,4,5 B.5,12,13 C.6,8,10 D.1,2,33、估计(

)A.在6和7之间 B.在5和6之间 C.在4和5之间 D.在3和4之间4、在实数、3、0、中,最小的数是(

)A. B.3 C.0 D.5、下列二次根式中,最简二次根式是()A. B. C. D.6、如果关于的不等式的解集是,那么数应满足的条件是(

)A. B. C. D.7、与是同类二次根式的是(

)A. B. C. D.8、如图,矩形的对角线,交于点,,,过点作,交于点,过点作,垂足为,则的值为(

)A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、已知函数y=(2m﹣4)x+m2﹣9(x是自变量)的图象只经过二、四象限,则m=_____.2、如图,点A坐标为(-4,-4),点B(0,m)在y轴的负半轴上沿负方向运动时,作Rt△ABC,其中∠BAC=90°.直线AC与x轴正半轴交于点C(n,0),当B点的运动过程中时,则m+n的值为______.3、在Rt△ABC中,∠ACB=90°,AC=6,BC=8.(1)如图1,D、E分别是AB和CB边上的点,把△BDE沿直线DE折叠,若点B落在AC边上的点F处,则CE的最小值是_______;(2)如图2,CG是AB边上的中线,将△ACG沿CG翻折后得到△HCG,连接BH,则BH的长为______.4、如图,矩形ABCD中,AB=3,BC=4,以点A为中心,将矩形ABCD旋转得到矩形AB'C'D',使得点B'落在边AD上,则∠C'AC的度数为_____°.5、若+(y﹣1)2=0,则(x+y)2021等于_____.6、如图,正方形ABCD的边长为1,其面积标记为S1,以AB为斜边向外作等腰直角三角形,再以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2,…按照此规律继续下去,则S7的值为_____.7、正方形A1B1C1O,A2B2C2C1,A3BC3C2,…按如图所示的方式放置.点A1,A2,A3,…和点C1,C2,C3,…分别在直线y=kx+b(k>0)和y轴上,已知点B1(1,1),B2(2,3),则点B3的坐标是_____,点Bn的坐标是_____.三、解答题(7小题,每小题10分,共计70分)1、如图1,在Rt△ABC中,∠ACB=90°,∠A=30°,BD是△ABC的角平分线,DE⊥AB于E.(1)发现:如图1,连接CE,则△BCE的形状是_______________,∠CDB=____________°;(2)探索:如图2,点P为线段AC上一个动点,当点P在CD之间运动时,连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ,即△BPQ是等边三角形;思路:在线段BD上截取点H,使DH=DP,得等边△DPH,由∠DPQ=∠HPB,PD=PH,∠QDP=∠BHP,易证△PDQ≌△PHB(ASA),得PQ=PB,即△BPQ是等边三角形.试判断线段DQ、DP、AD之间的关系,并说明理由;(3)类比:如图3,当点P在AD之间运动时连接BP,作∠BPQ=60°,PQ交射线DE于Q,连接BQ.①试判断△BPQ的形状,并说明理由;②若AD=2,设AP=x,DQ=y,请直接写出y与x之间的函数关系式.2、计算.3、如图,在平面直角坐标系中,直线l:分别交x轴,y轴于点A、B,将△AOB绕点O顺时针旋转90°后得到.(1)求直线的解析式;(2)若直线与直线l相交于点C,求的面积.4、如图,已知矩形ABCD的两条对角线相交于点O,∠ACB=30°,AB=2.(1)求AC的长及∠AOB的度数;(2)以OB,OC为邻边作菱形OBEC,求菱形OBEC的面积.5、如图,,分别为锐角边,上的点,把沿折叠,点落在所在平面内的点处.(1)如图1,点在的内部,若,,求的度数.(2)如图2,若,,折叠后点在直线上方,与交于点,且,求折痕的长.(3)如图3,若折叠后,直线,垂足为点,且,,求此时的长.6、济南某社区为倡导健康生活,推进全民健身,去年购进A,B两种健身器材若干件.经了解,B种健身器材的单价是A种健身器材的1.5倍,用6000元购买A种健身器材比用3600元购买B种健身器材多15件.(1)A,B两种健身器材的单价分别是多少元?(2)若今年两种健身器材的单价和去年保持不变,该社区计划再购进A,B两种健身器材共60件,且B种健身器材的数量不少于A种健身器材的4倍,请你确定一种购买方案使得购进A,B两种健身器材的费用最少.7、下面是某数学兴趣小组探究用不同方法作线段AB的垂直平分线的讨论片段,请仔细阅读,并完成相应任务,(1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧在上方交于点,连接CA,CB;(2)以点C为圆心,适当长为半径作弧,分别交边AC,于点,E;(3)分别作线段CD,CE的垂直平分线,两线交于点P;(4)作直线CP.直线CP即为线段AB的垂直平分线.简述理由如下:连接PD,PE,由作图知,PD=PC=PE,所以△PCD≌△PCE,则,即射线CP是∠ACB的平分线∵CA=CB,∴CP⊥AB,且平分线段,∴直线CP是线段AB的垂直平分线.小军:我认为小明的作图方法很有创意,但是太麻烦了,可以改进如下:如图(2),(1)分别以点A,B为圆心,大于AB的长为半径作弧,两弧在上方交于点,作射线CA,CB;(2)以点C为圆心,适当长为半径作弧,分别交射线CA,CB,于点,E;(3)连接BD,AE,交于点Q;(4)作直线CQ.直线CQ即为线段AB的垂直平分线.任务:(1)小明得出△PCD≌△PCE的依据是.(填序号)①SSS

②SAS

③AAS

④ASA

⑤HL(2)小军作图得到的直线CQ是线段AB的垂直平分线吗?请判断,并说明理由;(3)如图(3),在等腰三角形ABC中,CA=CB,,∠CAB=75°,点D,分别是射线,CB上的动点,且CD=CE,连接,AE,交点为点P.当∠PAB=45°时,直接写出线段的长.-参考答案-一、单选题1、D【解析】【分析】先根据轴对称可得直线经过点,再利用待定系数法可得直线的解析式,从而可得点的坐标,然后利用三角形的面积公式即可得.【详解】解:直线与直线关于轴对称且过点,直线经过点,将点代入直线得:,解得,则直线的解析式为,当时,,即,当时,,解得,即,则的面积为,故选:D.【点睛】本题考查了点坐标与轴对称、求一次函数的解析式等知识,熟练掌握待定系数法是解题关键.2、D【解析】【分析】根据勾股定理的逆定理,逐项判断即可求解.【详解】解:A、因为,所以能够作为直角三角形的三边长,故本选项不符合题意;B、因为,所以能够作为直角三角形的三边长,故本选项不符合题意;C、因为,所以能够作为直角三角形的三边长,故本选项不符合题意;D、因为,所以不能够作为直角三角形的三边长,故本选项符合题意;故选:D【点睛】本题主要考查了勾股定理的逆定理,熟练掌握若一个三角形的两边的平方和等于第三边的平方,则这个三角形是直角三角形是解题的关键.3、B【解析】【分析】根据题意可得,从而得到,即可求解.【详解】解:∵,∴,∴,即在5和6之间.故选:B【点睛】本题主要考查了无理数的估计,根据题意得到是解题的关键.4、A【解析】【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:由题意可得:故最小的数是故选:A.【点睛】此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.5、C【解析】【分析】最简二次根式是满足下列两个条件的二次根式:1.被开方数的因数是整数,因式为整式;2.被开方因数因式不能再被开方.【详解】A.0.3=B.,故B不是最简二次根式;C是最简二次根式;D.,故D不是最简二次根式,故选:C.【点睛】本题考查最简二次根式,是基础考点,难度较易,掌握相关知识是解题关键.6、B【解析】【分析】根据一元一次不等式的解可得,由此即可得出答案.【详解】解:关于的不等式的解集是,,解得,故选:B.【点睛】本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.7、D【解析】【分析】将各选项化简,被开方数是2的二次根式是的同类二次根式,从而得出答案.【详解】解:A选项,,故该选项不符合题意;B选项,是最简二次根式,被开方数不是2,故该选项不符合题意;C选项,=2,故该选项不符合题意;D选项,,故该选项符合题意;故选:D.【点睛】本题考查了同类二次根式,二次根式的性质与化简,掌握一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式是解题的关键.8、C【解析】【分析】由矩形的性质可得OA=OC=OB=OD=,再由三角形的面积和差关系求解即可.【详解】解:∵AB=3,BC=4,∴矩形ABCD的面积为3×4=12,BD=AC=,∴OA=OC=OB=OD=,∴,∵,∴,∴.故选:C.【点睛】本题考查了矩形的性质,三角形的面积关系,正确理解并掌握矩形的性质是解题的关键.二、填空题1、-3【解析】【分析】根据解析式是关于x的一次函数,只经过二、四象限可知函数为正比例函数,k<0,b=0,列方程与不等式求解即可.【详解】解:函数y=(2m﹣4)x+m2﹣9是关于x的一次函数,∵函数y=(2m﹣4)x+m2﹣9(x是自变量)的图象只经过二、四象限,∴,解得,∵m=3>2舍去,m=-3<2,满足条件,∴m=-3,故答案为-3.【点睛】本题考查一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程,掌握一次函数的性质,正比例函数,解不等式,直接开平方法解一元二次方程是解题关键.2、-8【解析】【分析】根据勾股定理和坐标的性质,分别计算得、、,结合∠BAC=90°,根据勾股定理的性质计算,即可得到答案.【详解】根据题意,得:∵∠BAC=90°∴∴∴∴故答案为:-8.【点睛】本题考查了勾股定理、直角坐标系的知识;解题的关键是熟练掌握勾股定理的性质,从而完成求解.3、

【解析】【分析】(1)当点B与点A重合时,CE最小,设CE=x,由勾股定理得,代入数值求出x值即可;(2)根据勾股定理求出AB,利用中线的性质得到CG=AG,过点G作GD⊥AC于D,由翻折得,求出EH,过点G作GF⊥BH,证明四边形GEHF是矩形,得到GF=EH,勾股定理求出BF,由BH=2BF求出答案.【详解】解:(1)当点B与点A重合时,CE最小,如图,设CE=x,则BE=8-x,由折叠得AE=BE=8-x,∵∠ACB=90°,,∴,解得x=,即CE的最小值是,(2)∵在Rt△ABC中,∠ACB=90°,AC=6,BC=8.∴,∵CG是AB边上的中线,∴,AG=BG=5,∴CG=AG,过点G作GD⊥AC于D,则,∴DG=4,由翻折得,∴,∴,得,过点G作GF⊥BH,∵GH=AG=BG,∴FH=BF,∠HGF=∠BGF,∵∠AGC=∠HGC,∴∠CGF=90°=∠GEH=∠GFH,∴四边形GEHF是矩形,∴GF=,∴∴BH=2BF=.故答案为:,.【点睛】此题考查了翻折的性质,勾股定理的应用,等腰三角形三线合一的性质,矩形的判定定理及性质定理,直角三角形斜边中线的性质,熟记各知识点并应用是解题的关键.4、90【解析】【分析】根据旋转的性质可得,利用全等三角形的性质可得,结合图形及矩形的性质可得,即可得出结果.【详解】解:∵将矩形ABCD旋转得到矩形,∴,∴,∵,∴,即,故答案为:90.【点睛】题目主要考查矩形的基本性质,旋转的性质,全等三角形的性质等,理解题意,结合图形,综合运用这些知识点是解题关键.5、-1【解析】【分析】利用非负数的性质求出x与y的值,代入原式计算即可求出值.【详解】解:∵+(y﹣1)2=0,∴x+2=0,y-1=0,解得:x=-2,y=1,则原式=(-2+1)2021=(-1)2021=-1.故答案为:-1.【点睛】此题考查了非负数的性质:算术平方根,以及偶次方,熟练掌握各自的性质是解本题的关键.6、【解析】【分析】根据题意求出S2=()1,S3=()2,S4=()3,…,根据规律解答.【详解】解:由题意得:S1=12=1,S2=(1×)2=()1,S3=(×)2==()2,S4=(××)2==()3,…,则Sn=()n-1,∴S7=()6=.故答案为:.【点睛】本题考查了等腰直角三角形的性质、勾股定理以及规律型中数的变化规律,解题的关键是找出规律“Sn=()n-1”.7、

(4,7)

(2n-1,2n-1)【解析】【分析】先由点B1(1,1)得到点A1的坐标,然后由B2(2,3)得到A2的坐标,进而得到直线的解析式,再令y=3求得点A3的坐标,从而求得点B3的坐标,⋯,再依次求得点Bn的坐标.【详解】解:∵点B1(1,1),B2(2,3),∴点A1(1,0),A2(2,1),将点A1(1,0),A2(2,1)代入y=kx+b得,,解得:,∴直线的解析式为y=x-1,令y=3得,x-1=3,∴x=4,∴点A3的坐标为(4,3),∴A3B3=4,∴B3的坐标为(4,7),令y=7得,x-1=7,∴x=8,∴点A4的坐标为(8,7),∴A4B4=8,∴B4的坐标为(8,15),⋯,∴点Bn的坐标为(2n-1,2n-1),故答案为:(4,7),(2n-1,2n-1).【点睛】本题考查了一次函数图象上点的坐标特征、正方形的性质,解题的关键是通过一次函数图象上点的坐标特征求得系列点B的坐标.三、解答题1、(1)等边三角形,60;(2)AD=DQ+DP,见解析;(3)①△BPQ是等边三角形,见解析;②y=-x+4【解析】【分析】(1)根据直角三角形的两锐角互余求得∠ABC=60°,再根据角平分线的定义求得∠ABD=∠CBD=∠A=30°,则AD=BD,根据等腰三角形的性质证得AE=BE,再由直角三角形斜边上的中线性质得出CE=BE,根据等边三角形的判定即可得出结论;(2)根据思路和全等三角形的性质得出BH=DQ,结合AD=BD,BD=DH+BH即可解答;(3)延长BD至F,使DF=PD,连接PF,可证得△PDF是等边三角形,则有PF=PD,∠F=∠PDF=∠DPF=60°,进而可得∠F=∠PDQ=60°,证明∠BPF=∠QPD,利用ASA证明△PBF≌△PQD,得出PB=PQ,BF=DQ,结合∠BPQ=60°和AD=BD即可得出①②的结论.(1)解:如图1,∵在Rt△ABC中,∠ACB=90°,∠A=30°,∴∠ABC=60°,∵BD是△ABC的角平分线,∴∠ABD=∠CBD=∠ABC=30°,∴∠ABD=∠A,∠CDB=90°-∠CBD=60°,∴AD=BD,又DE⊥AB,∴AE=BE=AB,又∠ACB=90°,∴CE=AB=BE,又∠ABC=60°,∴△BCE是等边三角形,故答案为:等边三角形,60;(2)解:AD=DQ+DP,理由为:在线段BD上截取点H,使DH=DP,如图2,∵∠CDB=60°,∴△DPH为等边三角形,∴DP=PH,∠DPH=∠DHP=60°,又∠BPQ=60°,∴∠DPQ+∠QPH=∠HPB+∠QPH=60°,∠BHP=120°,∴∠DPQ=∠HPB,∵∠A=30°,DE⊥AB,∴∠QDP=∠A+∠AED=30°+90°=120°,∴∠QDP=∠BHP,在△PDQ≌△PHB中,∴△PDQ≌△PHB(ASA),∴DQ=BH,PQ=PB,∵AD=BD,∠BPQ=60°,∴△BPQ为等边三角形,AD=BD=BH+DH=DQ+DP,即AD=DQ+DP;(3)解:①△BPQ为等边三角形,理由为:延长BD至F,使DF=DP,连接PF,设DQ和BP相交于O,如图3,∵∠PDF=∠CDB=60°,∴△PDF为等边三角形,∴PF=DP,∠F=∠PDF=∠DPF=60°,∵∠A=30°,DE⊥AB,

∴∠PDQ=90°-∠A=60°,∴∠F=∠PDQ=60°,∵∠DPF+∠DPB=∠BPQ+∠DPB,又∠BPQ=60°,∴∠BPF=∠QPD,在△PBF和△PQD中,,∴△PBF≌△PQD(ASA),∴PB=PQ,BF=DQ,又∠BPQ=60°,∴△BPQ为等边三角形;②∵DF=DP,BF=DQ,AD=BD,∴DQ=BF=BD+DF=AD+DP,∵AD=2,AP=x,DQ=y,∴y=2+2-x,即y=-x+4.【点睛】本题考查含30°角的直角三角形的性质、直角三角形斜边上的中线性质、角平分线的定义、等腰三角形的判定与性质、全等三角形的判定与性质、等边三角形的判定与性质、三角形的外角性质等知识,知识点较多,综合性强,熟练掌握相关知识的联系和运用,利用类比的方法解决问题是解答的关键.2、【解析】【分析】按照二次根式的化简方法,零指数法则,绝对值的意义,负指数幂的法则进行化简后即可得到答案.【详解】解:【点睛】本题考查了幂的运算法则、绝对值的化简、二次根式的化简等内容,关键是熟练掌握各种运算的方法.3、(1)(2)【解析】【分析】(1)根据直线l的解析式先确定出点A、B的坐标,根据旋转的性质结合图象可得,设直线的解析式为(为常数),将两点代入求解即可得;(2)联立两个一次函数求解可得点,结合图形得出,利用三角形面积公式求解即可得.(1)解:由直线分别交x轴、y轴于点A、B,当时,;当时,;∴,∵绕点顺时针旋转而得到,∴,故,设直线的解析式为(为常数),∴,解得:,∴直线的解析式为;(2)解:联立两个一次函数为:,解得:,∴点,∵,∴,∴的面积为.【点睛】题目主要考查直线与坐标轴交点问题及利用待定系数法确定函数解析式,旋转的性质,两个函数交点问题等,理解题意,结合图象,综合运用一次函数的基本性质是解题关键.4、(1),;(2)菱形的面积是.【解析】【分析】(1)根据AB的长结合“在直角三角形中,30°所对的直角边等于斜边的一半”可得出AC的长度,根据矩形的对角线互相平分可得出为等腰三角形,从而利用外角的知识可得出∠AOB的度数;(2)先求出△OBC和的面积,从而可求出菱形OBEC的面积.(1)解:在矩形中,,在中,.∴.∴.又∵,∴是等边三角形.

∴.(2)解:在中,由勾股定理,得.∴.∴.∴菱形的面积是.【点睛】本题考查矩形的性质、菱形的性质及勾股定理的知识,熟练掌握矩形的性质、菱形的性质及勾股定理是解题的关键.5、(1)(2)(3)或10【解析】【分析】(1)根据折叠知,,根据三角形内角和定理即可求得答案;(2)根据,由等边对等角可得,设度,根据三角形内角和为180°,建立一元一次方程解方程求解即可求得,过作于,根据勾股定理求得,根据含30度角的直角三角形的性质即可求得的长;(3)①当点在上方时,②当点在下方时,设,则,勾股定理求解即可;(1)由折叠知,,同理得,∴.(2)如图,∵,∴,设度,∵,∴度,∴,解得,即,过作于,∵,∴,∴.(3)当点在上方时,如图3-1∵,,直线,∴,设,则,又由折叠知:,,∴,在中,根据勾股定理,得解得,即;当点在下方时,如图3-2由折叠知:,,∴,设,则,在中,根据勾股定理,得,解得,即.【点睛】本题考查了折叠的性质,三角形内角和定理,等边对等角求角度,勾股定理,分类讨论是解题的关键.6、(1)A,B两种健身器材的单价分别

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论