难点解析-冀教版8年级下册期末试卷含答案详解(培优)_第1页
难点解析-冀教版8年级下册期末试卷含答案详解(培优)_第2页
难点解析-冀教版8年级下册期末试卷含答案详解(培优)_第3页
难点解析-冀教版8年级下册期末试卷含答案详解(培优)_第4页
难点解析-冀教版8年级下册期末试卷含答案详解(培优)_第5页
已阅读5页,还剩36页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

冀教版8年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题14分)一、单选题(7小题,每小题2分,共计14分)1、如图,平面直角坐标系中,直线分别交x轴、y轴于点B、A,以AB为一边向右作等边,以AO为一边向左作等边,连接DC交直线l于点E.则点E的坐标为()A. B.C. D.2、在平面直角坐标系中,A(2,3),O为原点,若点B为坐标轴上一点,且△AOB为等腰三角形,则这样的B点有()A.6个 B.7个 C.8个 D.9个3、如图所示各图中反映了变量y是x的函数是()A. B.C. D.4、小明晚饭后出门散步,行走的路线如图所示.则小明离家的距离与散步时间之间的函数关系可能是()A. B.C. D.5、下列调查中,适合用全面调查方式的是()A.了解市场上酸奶的质量情况B.了解乾陵全年的游客流量C.学校招聘教师对应聘人员的面试D.了解陕西电视台《都市快报》栏目的收视率6、将一次函数y=2x-4的图象向上平移3个单位长度,平移后函数经过点()A.(2,5) B.(2,4) C.(2,3) D.(2,0)7、如图,在平行四边形中,平分,交边于,,,则的长为()A.1 B.2 C.3 D.5第Ⅱ卷(非选择题86分)二、填空题(8小题,每小题2分,共计16分)1、已知点,则点到轴的距离为______,到轴的距离为______.2、将直线向下平移4个单位后,所得直线的表达式是______.3、如图(1),△ABC和是两个腰长不相等的等腰直角三角形,其中,∠A=.点、C'、B、C都在直线l上,△ABC固定不动,将在直线l上自左向右平移,开始时,点与点B重合,当点移动到与点C重合时停止.设△移动的距离为x,两个三角形重叠部分的面积为y,y与x之间的函数关系如图(2)所示,则BC的长是____.4、如图,正方形的对角线、相交于点O,等边绕点O旋转,在旋转过程中,当时,的度数为____________.5、如图,已知函数y=ax+b和y=kx的图象交于点P,则二元一次方程组的解是________;当ax+b≤kx时,x的取值范围是____________.6、某班按课外阅读时间将学生分为3组,第1、2组的频率分别为0.2、0.5,则第3组的频率是___.7、在四边形ABCD中,AD∥BC,BC⊥CD,BC=10cm,M是BC上一点,且BM=4cm,点E从A出发以1cm/s的速度向D运动,点F从点B出发以2cm/s的速度向点C运动,当其中一点到达终点,而另一点也随之停止,设运动时间为t,当t的值为_____时,以A、M、E、F为顶点的四边形是平行四边形.8、函数的定义域为__________.三、解答题(7小题,每小题10分,共计70分)1、如图,在△ABC中,AC=2,AB=4,BC=6,点P为边BC上的一个动点(不与点B、C重合),点P关于直线AB的对称点为点Q,联结PQ、CQ,PQ与边AB交于点D.(1)求∠B的度数;(2)联结BQ,当∠BQC=90°时,求CQ的长;(3)设BP=x,CQ=y,求y关于x的函数解析式,并写出函数的定义域.2、我国是一个严重缺水的国家.为了加强公民的节水意识,某市制定了如下用水收费标准:每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费.该市某户居民10月份用水吨,应交水费元.(1)若,请写出与的函数关系式.(2)若,请写出与的函数关系式.(3)如果该户居民这个月交水费23元,那么这个月该户用了多少吨水?3、在平面直角坐标系中,已知点,,,以点,,为顶点的平行四边形有三个,记第四个顶点分别为,,,如图所示.(1)若,则点,,的坐标分别是(),(),();(2)若△是以为底的等腰三角形,①直接写出的值;②若直线与△有公共点,求的取值范围.(3)若直线与△有公共点,求的取值范围.4、背景资料:在已知所在平面上求一点P,使它到三角形的三个顶点的距离之和最小.这个问题是法国数学家费马1640年前后向意大利物理学家托里拆利提出的,所求的点被人们称为“费马点”.如图1,当三个内角均小于120°时,费马点P在内部,当时,则取得最小值.(1)如图2,等边内有一点P,若点P到顶点A、B、C的距离分别为3,4,5,求的度数,为了解决本题,我们可以将绕顶点A旋转到处,此时这样就可以利用旋转变换,将三条线段、、转化到一个三角形中,从而求出_______;知识生成:怎样找三个内角均小于120°的三角形的费马点呢?为此我们只要以三角形一边在外侧作等边三角形并连接等边三角形的顶点与的另一顶点,则连线通过三角形内部的费马点.请同学们探索以下问题.(2)如图3,三个内角均小于120°,在外侧作等边三角形,连接,求证:过的费马点.(3)如图4,在中,,,,点P为的费马点,连接、、,求的值.(4)如图5,在正方形中,点E为内部任意一点,连接、、,且边长;求的最小值.5、在棋盘中建立如图所示的平面直角坐标系,A、O、B三颗棋子的位置如图所示,它们的坐标分别是,,.(1)如图添加棋子C,使A、O、B、C四颗棋子成为一个轴对称图形,请在图中画出该图形的对称轴.(2)在其他格点(除点C外)位置添加一颗棋子P,使A、O、B、P四颗棋子成为一个轴对称图形,直接写出棋子P的位置坐标(写出2个即可).6、已知线段AB,如果将线段AB绕点A逆时针旋转90°得到线段AC,则称点C为线段AB关于点A的“逆转点”,点C为线段AB关于点A的逆转点的示意图如图1:(1)如图2,在正方形ABCD中,点为线段DA关于点D的逆转点;(2)在平面直角坐标系xOy中,点P(x,0),点E是y轴上一点,.点F是线段EO关于点E的逆转点,点M(纵坐标为t)是线段EP关于点E的逆转点.①当时,求点M的坐标;②当,直接写出x的取值范围:.7、为了了解长春市冬季的天气变化情况,热爱气象观察的小明记录了2021年11月份30天的天气情况,具体信息如下:日期最高气温最低气温天气日期最高气温最低气温天气11﹣014℃0℃多云11﹣162℃﹣2℃晴11﹣029℃3℃阴11﹣176℃﹣1℃阴11﹣0312℃2℃晴11﹣184℃﹣6℃多云11﹣0415℃﹣2℃阴11﹣190℃﹣6℃多云11﹣0515℃10℃多云11﹣200℃﹣7℃多云11﹣062℃﹣6℃多云11﹣21﹣4℃﹣9℃阴11﹣07﹣3℃﹣4℃多云11﹣22﹣8℃﹣12℃多云11﹣089℃﹣4℃多云11﹣23﹣8℃﹣15℃晴11﹣09﹣3℃﹣6℃多云11﹣24﹣7℃﹣14℃晴11﹣10﹣2℃﹣5℃小雪11﹣25﹣5℃﹣13℃多云11﹣116℃2℃多云11﹣26﹣3℃﹣13℃多云11﹣12﹣1℃﹣7℃晴11﹣270℃﹣1℃多云11﹣134℃﹣6℃多云11﹣286℃﹣4℃多云11﹣1412℃9℃阴11﹣29﹣2℃﹣7℃多云11﹣152℃﹣4℃晴11﹣30﹣4℃﹣11℃多云请你帮助小明同学把以上数据整理成统计图表.2021年11月份长春市最低气温统计表最低气温分组频数频率10℃及10℃以上大于等于5℃小于10℃大于等于0℃小于5℃4大于等于﹣5℃小于0℃90.3大于等于﹣10℃小于﹣5℃a﹣10℃以下bm(1)补全条形统计图;(2)2021年11月份长春市最低气温统计表中a=;b=;m=.-参考答案-一、单选题1、C【解析】【分析】由题意求出C和D点坐标,求出直线CD的解析式,再与直线AB解析式联立方程组即可求出交点E的坐标.【详解】解:令直线中,得到,故,令直线中,得到,故,由勾股定理可知:,∵,且,∴,,过C点作CH⊥x轴于H点,过D点作DF⊥x轴于F,如下图所示:∵为等边三角形,∴,∴,∴,∴,∴,同理,∵为等边三角形,∴,,∴,∴,∴,设直线CD的解析式为:y=kx+b,代入和,得到:,解得,∴CD的解析式为:,与直线联立方程组,解得,故E点坐标为,故选:C.【点睛】本题考查的是一次函数图象上点的坐标特征,本题的关键是求出点C、D的坐标,进而求解.2、C【解析】【分析】分别以O、A为圆心,以OA长为半径作圆,与坐标轴交点即为所求点B,再作线段OA的垂直平分线,与坐标轴的交点也是所求的点B,作出图形,利用数形结合求解即可.【详解】解:如图,满足条件的点B有8个,故选:C.【点睛】本题考查了坐标与图形的性质及等腰三角形的判定,对于底和腰不等的等腰三角形,若条件中没有明确哪边是底哪边是腰时,应在符合三角形三边关系的前提下分类讨论.3、D【解析】【分析】函数的意义反映在图象上简单的判断方法是:做垂直x轴的直线在左右平移的过程中与函数图象只会有一个交点.【详解】解:根据函数的意义可知:对于自变量x的任何值,y都有唯一的值与之相对应,只有D正确.故选:D.【点睛】本题主要考查了函数图象的读图能力.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.4、C【解析】【分析】可将小明的运动过程分成三段,O点到A点,A点到B点,B点到O点,然后分析每段运动过程对应的图像,并作出选择.【详解】如上图可将小明的运动过程分成三段,O点到A点,A点到B点,B点到O点,当小明由O点到A点时:h随着t的增加而增加,当小明由A点到B点时:随着t的增加h不变,当小明由B点到O点时:h随着t的增加而减小,所以函数图像变化趋势为,先增加,再不变,最后减小,故C选项与题意相符,故选:C.【点睛】本题考查根据实际问题分析与之对应的函数图像,能够将实际问题进行分段分析,并将每一段对应的函数图像画出是解决本题的关键.5、C【解析】【分析】普查和抽样调查的选择,需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到限制,这时就应选择抽样调查.【详解】解:A.了解市场上酸奶的质量情况由于工作量大,适合采用抽样调查,故本选项不合题意B.了解乾陵全年的游客流量,适合采用抽样调查,故本选项不合题意;C.学校招聘教师对应聘人员的面试,适合采用普查方式,故本选项符合题意;D.了解陕西电视台《都市快报》栏目的收视率,适合采用普查方式,故本选项不符合题意.故选:C.【点睛】本题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似,掌握“普查与抽样调查各自的优缺点”是解本题的关键.6、C【解析】【分析】根据一次函数图象的平移规律:上加下减,先得到平移后的函数解析式,再把代入平移后的函数解析式求解从而可得答案.【详解】解:将一次函数y=2x-4的图象向上平移3个单位长度,平移后函数解析式为:当时,所以平移后函数经过点故选C【点睛】本题考查的是一次函数图象的平移,一次函数的性质,掌握“一次函数平移的变化规律”是解本题的关键.7、B【解析】【分析】先由平行四边形的性质得,,再证,即可求解.【详解】解:四边形是平行四边形,,,,平分,,,,,故选:B.【点睛】本题考查了平行四边形的性质,等腰三角形的判定等知识,解题的关键是灵活应用这些知识解决问题.二、填空题1、23【解析】【分析】点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值,据此即可得答案.【详解】∵点的坐标为,∴点到轴的距离为,到轴的距离为.故答案为:2;3【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的绝对值,到y轴的距离等于横坐标的绝对值是解题的关键.2、【解析】【分析】根据直线向下平移4个单位,可得平移后的直线的表达式为,即可求解.【详解】解:将直线向下平移4个单位后,所得直线的表达式是.故答案为:【点睛】本题主要考查了一次函数图象的平移,熟练掌握一次函数图象向上平移个单位后得到;向下平移个单位后得到是解题的关键.3、6【解析】【分析】观察函数图象可得,重叠部分的图形均为等腰直角三角形,运动距离为a时函数面积为1,知,求出a的值,再运动4个单位长度,面积保持不变,由此求出的长度,即可得到答案.【详解】解:如图,运动过程中,重叠部分的图形均为等腰直角三角形,图2至图4重叠部分面积不变,都是的值,由题中的函数图象知,.当恰为1时(如图2).设,则,∴a=2,使保持1时,即下图中图2—图4的情形,即图2中的长为4.∴BC的长为6.故答案为:6.【点睛】此题考查了运动问题,函数图象,会看函数图象,根据图形运动结合函数图象得到相关信息由此解决问题是解题的关键.4、或【解析】【分析】分两种情况:①根据正方形与等边三角形的性质得OC=OD,∠COD=90°,OE=OF,∠EOF=60°,可判断△ODE≌△OCF,则∠DOE=∠COF,于是可求∠DOF,即可得出答案;②同理可证得△ODE≌△OCF,所以∠DOE=∠COF,于是可求∠BOF,即可得答案.【详解】解:情况1,如下图:∵四边形ABCD是正方形,∴OD=OC,∠AOD=∠COD=90°,∵△OEF是等边三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOF=∠COE,∴∠DOF=(∠COD-∠EOF)=×(90°﹣60°)=15°,∴∠AOF=∠AOD+∠DOF=90°+15°=105°;情况2,如下图:连接DE、CF,∵四边形ABCD为正方形,∴OC=OD,∠AOD=∠COB=90°,∵△OEF为等边三角形,∴OE=OF,∠EOF=60°,在△ODE和△OCF中,∴△ODE≌△OCF(SSS),∴∠DOE=∠COF,∴∠DOE=∠COF=(360°-∠COD-∠EOF)=×(360°﹣90°﹣60°)=105°,∴∠BOF=∠COF-∠COB=105°-90°=15°,∴∠AOF=∠AOB-∠BOF=90°-15°=75°,故答案为:105°或75°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了正方形与等边三角形的性质,全等三角形的判定与性质,做题的关键是注意两种情况和证三角形全等.5、x≥-4【解析】【分析】根据图像可知,函数和交于点P(-4,-2),即可得二元一次方程组的解;根据函数图像可知,当时,.【详解】解:根据图像可知,函数和交于点P(-4,-2),则二元一次方程组的解是,由图像可知,当时,,故答案为:;.【点睛】本题考查了一次函数与二元一次方程组,解题的关键是掌握一次函数的性质.6、0.3【解析】【分析】根据各组频率之和为1,可求出答案.【详解】解:由各组频率之和为1得,1-0.2-0.5=0.3,故答案为:0.3.【点睛】本题考查频数和频率,理解“各组频数之和等于样本容量,各组频率之和等于1”是正确解答的前提.7、4s或s【解析】【分析】分两种情况:①当点F在线段BM上,即0≤t<2,②当F在线段CM上,即2≤t≤5,列方程求解.【详解】解:①当点F在线段BM上,即0≤t<2,以A、M、E、F为顶点的四边形是平行四边形,则有t=4﹣2t,解得t=,②当F在线段CM上,即2≤t≤5,以A、M、E、F为顶点的四边形是平行四边形,则有t=2t﹣4,解得t=4,综上所述,t=4或,以A、M、E、F为顶点的四边形是平行四边形,故答案为:4s或s.【点睛】此题考查了动点问题,一元一次方程与动点问题,平行四边形的定义,熟记平行四边形的定义是解题的关键.8、且【解析】【分析】由分式与二次根式有意义的条件可得再解不等式组即可得到答案.【详解】解:由题意可得:由①得:由②得:所以函数的定义域为且故答案为:且【点睛】本题考查的是二次函数的自变量的取值范围,分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式有意义的条件”是解本题的关键.三、解答题1、(1)30°(2)(3)y=(0<x<6)【解析】【分析】(1)由勾股定理的逆定理可得出,由直角三角形的性质可得出答案;(2)求出,由直角三角形的性质得出.由勾股定理可得出答案;(3)过点作于点,证明为等边三角形,由勾定理得出,则可得出答案.(1)解:,,,,,,,,;(2)解:点关于直线的对称点为点,垂直平分,,,,,,,.;(3)解:过点作于点,,,为等边三角形,,,,,,,,,关于的函数解析式为.【点睛】本题是三角形综合题,考查了直角三角形的性质,等边三角形的判定与性质,勾股定理,轴对称的性质,解题的关键是熟练掌握勾股定理.2、(1)y=1.5x(2)y=2.2x−5.6(3)13吨【解析】【分析】(1)当0<x≤8时,根据水费=用水量×1.5,即可求出y与x的函数关系式;(2)当x>8时,根据“每户每月的用水不超过8吨时,水价为每吨1.5元,超过8吨时,超过的部分按每吨2.2元收费”,得出水费=8×1.5+(用水量-8)×2.2,即可求出y与x的函数关系式;(3)当0<x≤8时,y≤12,由此可知这个月该户用水量超过8吨,将y=23代入(2)中所求的关系式,求出x的值即可.(1)根据题意可知:当0<x⩽8时,y=1.5x;(2)根据题意可知:当时,y=1.5×8+2.2×(x−8)=2.2x−5.6;(3)当0<x⩽8时,y=1.5x,的最大值为1.5×8=12(元),12<23,该户当月用水超过8吨.令y=2.2x−5.6中y=23,则23=2.2x−5.6,解得:x=13.答:这个月该户用了13吨水.【点睛】本题考查了一次函数的应用,根据数量关系找出函数关系式是解题关键.3、(1)-3,3,1,3,-3,-1(2)①-2;②(3)或【解析】【分析】(1)分别以、、为对角线,利用平行四边形以及平移的性质可得点,,的坐标;(2)①根据平行公理得,、在同一直线上,、、在同一直线上,可得是等腰三角形△的中位线,求出,即可得的值;②由①求得的的值可得,的坐标,分别求出直线过点,时的值即可求解;(3)由题意用表示出点,,的坐标,画出图形,求出直线与△交于点,时的值即可求解.(1)解:,,,轴.以为对角线时,四边形是平行四边形,,,将向左平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,,,将向右平移2个单位长度可得,即;以为对角线时,四边形是平行四边形,对角线的中点与的中点重合,的中点为,,.故答案为:,,;(2)解:①如图,若△是以为底的等腰三角形,四边形,,是平行四边形,,,,、、在同一直线上,、、在同一直线上,,是等腰三角形△的中位线,,,,,,,;②由①得,,.当直线过点时,,解得:,当直线过点时,,解得:,的取值范围为;(3)解:如图,,,,,.连接、交于点,四边形是平行四边形,点、关于点对称,,直线与△有公共点,当直线与△交于点,,解得:,时,直线与△有公共点;当直线与△交于点,,解得:,时,直线与△有公共点;综上,的取值范围为或.【点睛】本题考查了平行四边形的性质,坐标与图形性质,平移的性质,一次函数的性质,一次函数图象上点的坐标特征等知识,解题的关键是利用数形结合与分类讨论的思想进行求解.4、(1)150°;(2)见详解;(3);(4).【解析】【分析】(1)根据旋转性质得出≌,得出∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,根据△ABC为等边三角形,得出∠BAC=60°,可证△APP′为等边三角形,PP′=AP=3,∠AP′P=60°,根据勾股定理逆定理,得出△PP′C是直角三角形,∠PP′C=90°,可求∠AP′C=∠APP+∠PPC=60°+90°=150°即可;(2)将△APB逆时针旋转60°,得到△AB′P′,连结PP′,根据△APB≌△AB′P′,AP=AP′,PB=PB′,AB=AB′,根据∠PAP′=∠BAB′=60°,△APP′和△ABB′均为等边三角形,得出PP′=AP,根据,根据两点之间线段最短得出点C,点P,点P′,点B′四点共线时,最小=CB′,点P在CB′上即可;(3)将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,得出△APB≌△AP′B′,可证△APP′和△ABB′均为等边三角形,得出PP′=AP,BB′=AB,∠ABB′=60°,根据,可得点C,点P,点P′,点B′四点共线时,最小=CB′,利用30°直角三角形性质得出AB=2AC=2,根据勾股定理BC=,可求BB′=AB=2,根据∠CBB′=∠ABC+∠ABB′=30°+60°=90°,在Rt△CBB′中,B′C=即可;(4)将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,得出△BCE≌△CE′B′,BE=B′E′,CE=CE′,CB=CB′,可证△ECE′与△BCB′均为等边三角形,得出EE′=EC,BB′=BC,∠B′BC=60°,,得出点C,点E,点E′,点B′四点共线时,最小=AB′,根据四边形ABCD为正方形,得出AB=BC=2,∠ABC=90°,可求∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,根据30°直角三角形性质得出BF=,勾股定理BF=,可求AF=AB+BF=2+,再根据勾股定理AB′=即可.(1)解:连结PP′,∵≌,∴∠BAP=∠CAP′,∠APB=∠AP′C,AP=AP′=3,BP=CP′=4,∵△ABC为等边三角形,∴∠BAC=60°∴∠PAP′=∠PAC+∠CAP′=∠PAC+∠BAP=60°,∴△APP′为等边三角形,,∴PP′=AP=3,∠AP′P=60°,在△P′PC中,PC=5,,∴△PP′C是直角三角形,∠PP′C=90°,∴∠AP′C=∠APP+∠PPC=60°+90°=150°,∴∠APB=∠AP′C=150°,故答案为150°;(2)证明:将△APB逆时针旋转60°,得到△AB′P′,连结PP′,∵△APB≌△AB′P′,∴AP=AP′,PB=PB′,AB=AB′,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均为等边三角形,∴PP′=AP,∵,∴点C,点P,点P′,点B′四点共线时,最小=CB′,∴点P在CB′上,∴过的费马点.(3)解:将△APB逆时针旋转60°,得到△AP′B′,连结BB′,PP′,∴△APB≌△AP′B′,∴AP′=AP,AB′=AB,∵∠PAP′=∠BAB′=60°,∴△APP′和△ABB′均为等边三角形,∴PP′=AP,BB′=AB,∠ABB′=60°,∵∴点C,点P,点P′,点B′四点共线时,最小=CB′,∵,,,∴AB=2AC=2,根据勾股定理BC=∴BB′=AB=2,∵∠CBB′=∠ABC+∠ABB′=30°+60°=90°,∴在Rt△CBB′中,B′C=∴最小=CB′=;(4)解:将△BCE逆时针旋转60°得到△CE′B′,连结EE′,BB′,过点B′作B′F⊥AB,交AB延长线于F,∴△BCE≌△CE′B′,∴BE=B′E′,CE=CE′,CB=CB′,∵∠ECE′=∠BCB′=60°,∴△ECE′与△BCB′均为等边三角形,∴EE′=EC,BB′=BC,∠B′BC=60°,∵,∴点C,点E,点E′,点B′四点共线时,最小=AB′,∵四边形ABCD为正方形,∴AB=BC=2,∠ABC=90°,∴∠FBB′=180°-∠ABC-∠CBB′=180°-90°-60°=30°,∵B′F⊥AF,∴BF=,BF=,∴AF=AB+BF=2+,∴AB′=,∴最小=AB′=.【点睛】本题考查图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质,掌握图形旋转性质,等边三角形判定与性质,勾股定理,直角三角形判定与性质,两点之间线段最短,四点共线,正方形性质,30°直角三角形性质是

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论