难点详解重庆市大学城第一中学7年级数学下册第四章三角形专题测试试卷(详解版)_第1页
难点详解重庆市大学城第一中学7年级数学下册第四章三角形专题测试试卷(详解版)_第2页
难点详解重庆市大学城第一中学7年级数学下册第四章三角形专题测试试卷(详解版)_第3页
难点详解重庆市大学城第一中学7年级数学下册第四章三角形专题测试试卷(详解版)_第4页
难点详解重庆市大学城第一中学7年级数学下册第四章三角形专题测试试卷(详解版)_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

重庆市大学城第一中学7年级数学下册第四章三角形专题测试考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题20分)一、单选题(10小题,每小题2分,共计20分)1、如图,△ABC中,D,E分别为BC,AD的中点,若△CDE的面积使2,则△ABC的面积是()A.4 B.5 C.6 D.82、如图是5×5的正方形网格中,以D,E为顶点作位置不同的格点的三角形与△ABC全等,这样格点三角形最多可以画出()A.2个 B.3个 C.4个 D.5个3、已知三角形的两边长分别为和,则下列长度的四条线段中能作为第三边的是()A. B. C. D.4、如图,D为∠BAC的外角平分线上一点,过D作DE⊥AC于E,DF⊥AB交BA的延长线于F,且满足∠FDE=∠BDC,则下列结论:①△CDE≌△BDF;②CE=AB+AE;③∠BDC=∠BAC;④∠DAF=∠CBD.其中正确的结论有()A.1个 B.2个 C.3个 D.4个5、如图,在△ABC和△DEF中,∠A=∠D,AF=DC,添加下列条件中的一个仍无法证明△ABC≌△DEF的是()A.BC=EF B.AB=DE C.∠B=∠E D.∠ACB=∠DFE6、如图,已知,要使,添加的条件不正确的是()A. B. C. D.7、下列长度的三条线段能组成三角形的是()A.3,4,7 B.3,4,8 C.3,4,5 D.3,3,78、如图,在正方形ABCD中,E,F分别为AD,CD上的点,且AE=CF,则下列说法正确的是()A.∠1﹣∠2=90° B.∠1=∠2+45° C.∠1+∠2=180° D.∠1=2∠29、有两根长度分别为7cm,11cm的木棒,下面为第三根的长度,则可围成一个三角形框架的是()A.3cm B.4cm C.9cm D.19cm10、若三条线段中a=3,b=5,c为奇数,那么以a、b、c为边组成的三角形共有()A.1个 B.2个 C.3个 D.4个第Ⅱ卷(非选择题80分)二、填空题(10小题,每小题2分,共计20分)1、如图,△ABC的面积等于35,AE=ED,BD=3DC,则图中阴影部分的面积等于_______2、如图,在△ABC中,∠ACB=90°,AC=8,BC=10,点P从点A出发沿线段AC以每秒1个单位长度的速度向终点C运动,点Q从点B出发沿折线BC﹣CA以每秒3个单位长度的速度向终点A运动,P、Q两点同时出发.分别过P、Q两点作PE⊥l于E,QF⊥l于F,当△PEC与△QFC全等时,CQ的长为______.3、如图,∠AOB=90°,OA=OB,直线l经过点O,分别过A、B两点作AC⊥l于点C,BD⊥l于点D,若AC=5,BD=3,则CD=_______.4、如图,直线ED把分成一个和四边形BDEC,的周长一定大于四边形BDEC的周长,依据的原理是____________________________________.5、如图,在△ABC中,∠ACB=90°,AC=BC,BE⊥CE于点E,AD⊥CE于点D,己知DE=4,AD=6,则BE的长为___.6、如图,Rt△ABC中,∠ACB=90°,AB=5,BC=3,将斜边AB绕点A顺时针旋转90°至AB′,连接B'C,则△AB′C的面积为_____.7、如图,∠1=∠2,加上条件_____,可以得到△ADB≌△ADC(SAS).8、如图,已知,请添加一个条件,使得,则添加的条件可以为___(只填写一个即可).9、如图,AE与BD相交于点C,AC=EC,BC=DC,AB=5cm,点P从点A出发,沿A→B方向以2cm/s的速度运动,点Q从点D出发,沿D→E方向以1cm/s的速度运动,P、Q两点同时出发.当点P到达点B时,P、Q两点同时停止运动.设点P的运动时间为t(s).(1)AP的长为___cm.(用含t的代数式表示)(2)连接PQ,当线段PQ经过点C时,t=___s.10、图①是将木条用钉子钉成的四边形和三角形木架,拉动木架,观察图②中的变动情况,说一说,其中所蕴含的数学原理是_____.三、解答题(6小题,每小题10分,共计60分)1、如图,AB是⊙O的直径,CD是⊙O中任意一条弦,求证:AB≥CD.2、在复习课上,老师布置了一道思考题:如图所示,点M,N分别在等边的边上,且,,交于点Q.求证:.同学们利用有关知识完成了解答后,老师又提出了下列问题:(1)若将题中“”与“”的位置交换,得到的是否仍是真命题?请你给出答案并说明理由.(2)若将题中的点M,N分别移动到的延长线上,是否仍能得到?请你画出图形,给出答案并说明理由.3、证明“全等三角形的对应角的平分线相等”.要求:将已有图形根据题意补充完整,并据此写出己知、求证和证明过程.4、在解决线段数量关系问题中,如果条件中有角平分线,经常采用下面构造全等三角形的解决思路,如:在图1中,若C是∠MON的平分线OP上一点,点A在OM上,此时,在ON上截取OB=OA,连接BC,根据三角形全等判定(SAS),容易构造出全等三角形OBC和OAC,参考上面的方法,解答下列问题,如图2,在非等边ABC中,∠B=60°,AD、CE分别是∠BAC、∠BCA的平分线,且AD、CE交于点F.(1)求∠AFC的度数;(2)求证:AC=AE+CD.5、如图,(1),已知△ABC中,∠BAC=90°,,AE是过点A的一条直线,且B,C在A,E的异侧,于点D,于点E(1)试说明:;(2)若直线AE绕点A旋转到图(2)位置时,其余条件不变,问BD与DE,CE的关系如何?请直接写出结果;6、如图,已知点B,F,C,E在同一直线上,AB∥DE,BF=CE,AB=ED,求证:∠A=∠D.-参考答案-一、单选题1、D【分析】根据三角形的中线把三角形分成面积相等的两部分,求出面积比,即可求出的面积.【详解】∵AD是BC上的中线,∴,∵CE是中AD边上的中线,∴,∴,即,∵的面积是2,∴.故选:D.【点睛】本题考查的是三角形的中线的性质,三角形一边上的中线把原三角形分成的两个三角形的面积相等.2、C【分析】观察图形可知:DE与AC是对应边,B点的对应点在DE上方两个,在DE下方两个共有4个满足要求的点,也就有四个全等三角形.【详解】根据题意,运用“SSS”可得与△ABC全等的三角形有4个,线段DE的上方有两个点,下方也有两个点,如图.故选C.【点睛】本题考查三角形全等的判定方法,解答本题的关键是按照顺序分析,要做到不重不漏.3、C【分析】根据三角形的三边关系可得,再解不等式可得答案.【详解】解:设三角形的第三边为,由题意可得:,即,故选:C.【点睛】本题主要考查了三角形的三边关系,解题的关键是掌握三角形两边之和大于第三边;三角形的两边差小于第三边.4、D【分析】利用AAS证明△CDE≌△BDF,可判断①④正确;再利用HL证明Rt△ADE≌Rt△ADF,可判断②正确;由∠BAC=∠EDF,∠FDE=∠BDC,可判断③正确.【详解】解:∵AD平分∠CAF,DE⊥AC,DF⊥AB,∴DE=DF,∠DFB=∠DEC=90°,∵∠FDE=∠BDC,∴∠FDB=∠EDC,在△CDE与△BDF中,,∴△CDE≌△BDF(AAS),故①正确;∴CE=BF,在Rt△ADE与Rt△ADF中,,∴Rt△ADE≌Rt△ADF(HL),∴AE=AF,∴CE=AB+AF=AB+AE,故②正确;∵∠DFA=∠DEA=90°,∴∠EDF+∠FAE=180°,∵∠BAC+∠FAE=180°,∴∠FDE=∠BAC,∵∠FDE=∠BDC,∴∠BDC=∠BAC,故③正确;∵∠FAE是△ABC的外角,∴2∠DAF=∠ABC+∠ACB=∠ABD+∠DBC+∠ACB,∵Rt△CDE≌Rt△BDF,∴∠ABD=∠DCE,BD=DC,∴∠DBC=∠DCB,∴2∠DAF=∠DCE+∠DBC+∠ACB=∠DBC+∠DCB=2∠DBC,∴∠DAF=∠CBD,故④正确故选:D.【点睛】本题主要考查了全等三角形的判定及性质,外角的性质等,熟悉掌握全等三角形的判定方法,灵活寻找条件是解题的关键.5、A【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可.【详解】解:∵AF=DC,∴AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,∠A=∠D,不符合全等三角形的判定定理,不能推出△ABC≌△DEF,故本选项符合题意;B、AB=DE,∠A=∠D,AC=DF,符合全等三角形的判定定理SAS,能推出△ABC≌△DEF,故本选项不符合题意;C.∠B=∠E,∠A=∠D,AC=DF,符合全等三角形的判定定理AAS,能推出△ABC≌△DEF,故本选项不符合题意;D.∠ACB=∠DFE,AC=DF,∠A=∠D,符合全等三角形的判定定理ASA,能推出△ABC≌△DEF,故本选项不符合题意;故选:A.【点睛】本题考查了全等三角形的判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL.6、D【分析】已知条件AB=AC,还有公共角∠A,然后再结合选项所给条件和全等三角形的判定定理进行分析即可.【详解】解:A、添加BD=CE可得AD=AE,可利用利用SAS定理判定△ABE≌△ACD,故此选项不合题意;B、添加∠ADC=∠AEB可利用AAS定理判定△ABE≌△ACD,故此选项不合题意;C、添加∠B=∠C可利用ASA定理判定△ABE≌△ACD,故此选项不合题意;D、添加BE=CD不能判定△ABE≌△ACD,故此选项符合题意;故选:D.【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL(直角三角形),掌握三角形全等的判定方法是解题关键.7、C【分析】根据组成三角形的三边关系依次判断即可.【详解】A、3,4,7中3+4=7,故不能组成三角形,与题意不符,选项错误.B、3,4,8中3+4<8,故不能组成三角形,与题意不符,选项错误.C、3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确.D、3,3,7中3+3<7,故不能组成三角形,与题意不符,选项错误.故选:C.【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边.8、C【分析】由“SAS”可证△ABE≌△CBF,可得∠AEB=∠2,即可求解.【详解】解:∵四边形ABCD是正方形,∴AB=BC,∠A=∠C=90°,在△ABE和△CBF中,,∴△ABE≌△CBF(SAS),∴∠AEB=∠2,∵∠AEB+∠1=180°,∴∠1+∠2=180°,故选:C.【点睛】本题考查了正方形的性质,全等三角形的判定和性质,证明三角形全等是解题的关键.9、C【分析】已知两边,则第三边的长度应是大于两边的差且小于两边的和,这样就可求出第三边长的范围.【详解】解:依题意得:11﹣7<x<7+11,即4<x<18,9cm适合.故选:C.【点睛】本题考查三角形三边关系,是重要考点,掌握相关知识是解题关键.10、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数.【详解】解:c的范围是:5﹣3<c<5+3,即2<c<8.∵c是奇数,∴c=3或5或7,有3个值.则对应的三角形有3个.故选:C.【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键.二、填空题1、15【分析】连接DF,根据AE=ED,BD=3DC,可得,,,,然后设△AEF的面积为x,△BDE的面积为y,则,,,,再由△ABC的面积等于35,即可求解.【详解】解:如图,连接DF,∵AE=ED,∴,,∵BD=3DC,∴,设△AEF的面积为x,△BDE的面积为y,则,,,,∵△ABC的面积等于35,∴,解得:.故答案为:15【点睛】本题主要考查了与三角形中线有关的面积问题,根据题意得到,,,是解题的关键.2、7或3.5【分析】分两种情况:(1)当P在AC上,Q在BC上时;(2)当P在AC上,Q在AC上时,即P、Q重合时;【详解】解:当P在AC上,Q在BC上时,∵∠ACB=90°,∴∠PCE+∠QCF=90°,∵PE⊥l于E,QF⊥l于F.∴∠PEC=∠CFQ=90°,∴∠EPC+∠PCE=90°,∴∠EPC=∠QCF,∵△PEC与△QFC全等,∴此时是△PCE≌△CQF,∴PC=CQ,∴8-t=10-3t,解得t=1,∴CQ=10-3t=7;当P在AC上,Q在AC上时,即P、Q重合时,则CQ=PC,由题意得,8-t=3t-10,解得t=4.5,∴CQ=3t-10=3.5,综上,当△PEC与△QFC全等时,满足条件的CQ的长为7或3.5,故答案为:7或3.5.【点睛】本题主要考查了全等三角形的性质,根据题意得出关于的方程是解题的关键.3、2【分析】首先根据同角的余角相等得到∠A=∠BOD,然后利用AAS证明△ACO≌△ODB,根据全等三角形对应边相等得出AC=OD=5,OC=BD=3,根据线段之间的数量关系即可求出CD的长度.【详解】解:∵AC⊥l于点C,BD⊥l于点D,∴∠ACO=∠ODB=90°,∵∠AOB=90°,∴∠A=90°﹣∠AOC=∠BOD,在△ACO和△ODB中,,∴△ACO≌△ODB(AAS),∴AC=OD=5,OC=BD=3,∴CD=OD﹣OC=5﹣3=2,故答案为:2.【点睛】此题考查了全等三角形的性质和判定,同角的余角相等,解题的关键是根据题意证明△ACO≌△ODB.4、三角形两边之和大于第三边【分析】表示出和四边形BDEC的周长,再结合中的三边关系比较即可.【详解】解:的周长=四边形BDEC的周长=∵在中∴即的周长一定大于四边形BDEC的周长,∴依据是:三角形两边之和大于第三边;故答案为三角形两边之和大于第三边【点睛】本题考查了三角形三边关系定理,关键是熟悉三角形两边之和大于第三边的知识点.5、2【分析】根据AAS证明△ACD≌△CBE,再利用其性质解答即可.【详解】解:∵∠ACB=90°,∴∠BCE+∠ACD=90°,∵AD⊥CE,BE⊥CE,∴∠ADC=∠CEB=90°,∠CAD+∠ACD=90°,∴∠BCE=∠CAD,在△ACD与△CBE中,,∴△ACD≌△CBE,∴BE=CD,CE=AD,∴BE=CD=CE−DE=AD−DE=6−4=2.故答案为:2.【点睛】本题考查三角形全等的判定和性质,要根据AAS证明△ACD≌△CBE是解题的关键.6、【分析】根据题意过点B'作B'H⊥AC于H,由全等三角形的判定得出△ACB≌△B'HA(AAS),得AC=B'H=4,则有S△AB'C=AC•B′H即可求得答案.【详解】解:过点B'作B'H⊥AC于H,∴∠AHB'=90°,∠BAB'=90°,∴∠HAB'+∠HB'A=90°,∠BAC+∠CAB'=90°,∴∠HB'A=∠CAB,在△ACB和△B'HA中,,∴△ACB≌△B'HA(AAS),∴AC=B'H,∵∠ACB=90°,AB=5,BC=3,∴AC===4,∴AC=B'H=4,∴S△AB'C=AC•B′H=×4×4=8.故答案为:8.【点睛】本题主要考查三角形全等的判定与性质和旋转的性质以及勾股定理,根据题意利用全等三角形的判定证明△ACB≌△B'HA是解决问题的关键.7、AB=AC(答案不唯一)【分析】根据全等三角形的判定定理SAS证得△ADB≌△ADC.【详解】解:加上条件,AB=AC,可以得到△ADB≌△ADC(SAS).在△ADB与△ADC中,,∴△ADB≌△ADC(SAS),故答案为:AB=AC(答案不唯一).【点睛】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.8、或【分析】根据全等三角形的判定方法即可解决问题.【详解】解:由题意,,根据,可以添加,使得,根据,可以添加,使得.故答案为:或【点睛】本题主要考查了全等三角形的判定,熟练掌握全等三角形的判定方法——边角边、角边角、角角边、边边边是解题的关键.9、2【分析】(1)根据路程=速度×时间求解即可;(2)根据全等三角形在判定证明△ACB≌△ECD可得AB=DE,∠A=∠E,当PQ经过点C时,可证得△ACP≌△ECQ,则有AP=EQ,进而可得出t的方程,解方程即可.【详解】解:(1)由题意知:AP=2t,0<t≤,故答案为:2t;(2)∵AC=EC,∠ACB=∠ECD,BC=DC,∴△ACB≌△ECD(SAS),∴DE=AB=5cm,∠A=∠E,当PQ经过点C时,∵∠A=∠E,AC=EC,∠ACP=∠ECQ,∴△ACP≌△ECQ(ASA),∴AP=EQ,又∵AP=2t,DQ=t,∴2t=5-t,解得:t=,故答案为:.【点睛】本题考查全等三角形的应用,熟练掌握全等三角形的判定与性质是解答的关键.10、三角形具有稳定性,四边形具有不稳定性【分析】根据三角形的稳定性和四边形的不稳定性解答.【详解】由图示知,四边形变形了,而三角形没有变形,其中所蕴含的数学原理是三角形具有稳定性,四边形具有不稳定性.故答案是:三角形具有稳定性,四边形具有不稳定性.【点睛】本题考查了三角形的稳定性和四边形具有不稳定性,关键抓住图中图形是否变形,从而判断是否具有稳定性.三、解答题1、见解析【分析】连接,,再根据三角形的三边关系即可得出结论.【详解】连接,,,,.当且仅当CD过圆心O时,取“=”号,.【点睛】本题考查的是三角形的三边关系,解题的关键是熟知三角形任意两边之和大于第三边.2、(1)仍是真命题,证明见解析(2)仍能得到,作图和证明见解析【分析】(1)由角边角得出和全等,对应边相等即可.(2)由(1)问可知BM=CN,故可由边角边得出和全等,对应角相等,即可得出.(1)∵∴∵∴在和中有∴∴故结论仍为真命题.(2)∵BM=CN∴CM=AN∵AB=AC,,在和中有∴∴∴故仍能得到,如图所示【点睛】本题考查了全等三角形的判定和性质,从判定两个三角形全等的方法可知,要判定两个三角形全等,需要知道这两个三角形分别有三个元素(其中至少一个元素是边)对应相等,这样就可以利用题目中的已知边角迅速、准确地确定要补充的边角,有目的地完善三角形全等的条件,从而得到判定两个三角形全等的思路.3、见解析.【分析】根据图形和命题写出已知求证,根据全等三角形的性质得出∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,根据角平分线的定义得出∠BAD=∠B′A′D′,根据全等三角形的判定得出△BAD≌△B′A′D′,再根据全等三角形的性质得出答案即可.【详解】解:如图,已知:△ABC≌△A′B′C′,AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,求证:AD=A′D′,证明:∵△ABC≌△A′B′C′,∴∠B=∠B′,AB=A′B′,∠BAC=∠B′A′C′,∵AD、A′D′分别是∠BAC和∠B′A′C′的角平分线,∴∠BAD=∠BAC,∠B′A′D′=∠B′A′C′,∴∠BAD=∠B′A′D′,在△BAD和△B′A′D中,,∴△BAD≌△B′A′D′(ASA),∴AD=A′D′.【点睛】本题考查了全等三角形的判定定理和性质定理,能求出△BAD≌△B′A′D′是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAAS,SSS,两直角三角形全等还有HL,全等三角形的对应边相等.4、(1)120°;(2)见详解.【分析】(1)根据题意在AC上截取AG=AE,连接FG,进而根据角平分线的性质和三角形内角和180°进行分析计算即可;(2)由题意在(1)基础上根据平角等于180°推出∠CFG=60°,然后利用“角边角”证明△CFG和△CFD全等,进而根据全等三角形对应边相等可得FG=FD,从而得证.【详解】解:(1)如图,在AC上截取AG=AE,连接FG.∵AD是∠BAC的平分线,CE是∠BCA的平分线,∴

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论