版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
沪科版9年级下册期末试卷考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题16分)一、单选题(8小题,每小题2分,共计16分)1、如图,与的两边分别相切,其中OA边与相切于点P.若,,则OC的长为()A.8 B. C. D.2、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是()A. B. C. D.3、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为()A.25° B.80° C.130° D.100°4、若a是从“、0、1、2”这四个数中任取的一个数,则关于x的方程为一元二次方程的概率是()A.1 B. C. D.5、下列语句判断正确的是()A.等边三角形是轴对称图形,但不是中心对称图形B.等边三角形既是轴对称图形,又是中心对称图形C.等边三角形是中心对称图形,但不是轴对称图形D.等边三角形既不是轴对称图形,也不是中心对称图形6、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接.则在点M运动过程中,线段长度的最小值是()A. B.1 C.2 D.7、下列各点中,关于原点对称的两个点是()A.(﹣5,0)与(0,5) B.(0,2)与(2,0)C.(﹣2,﹣1)与(﹣2,1) D.(2,﹣1)与(﹣2,1)8、下列图形中,既是轴对称图形,又是中心对称图形的是()A. B. C. D.第Ⅱ卷(非选择题84分)二、填空题(7小题,每小题2分,共计14分)1、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,,点P在BC边所在的直线l上移动,小方发现AP的最小值是______;(2)如图(2)在直角中,,,,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60°,得到线段AP,连接CP,线段CP的最小值是______.2、如图,把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,则旋转角α的度数为_____.3、如图,PA是⊙O的切线,A是切点.若∠APO=25°,则∠AOP=___________°.4、如图,已知,外心为,,,分别以,为腰向形外作等腰直角三角形与,连接,交于点,则的最小值是______.5、如图,过⊙O外一点P,作射线PA,PB分别切⊙O于点A,B,,点C在劣弧AB上,过点C作⊙O的切线分别与PA,PB交于点D,E.则______度.6、如图,在等腰直角中,已知,将绕点逆时针旋转60°,得到,连接,若,则________.7、现有A、B两个不透明的袋子,各装有三个小球,A袋中的三个小球上分别标记数字1,2,3;B袋中的三个小球上分别标记数字2,3,4.这六个小球除标记的数字外,其余完全相同.将A、B两个袋子中的小球摇匀,然后从A、B袋中各随机摸出一个小球,则摸出的这两个小球标记的数字之和为5的概率为______.三、解答题(7小题,每小题0分,共计0分)1、如图,已知AB是的直径,点D为弦BC中点,过点C作切线,交OD延长线于点E,连结BE,OC.(1)求证:.(2)求证:BE是的切线.2、如图,在中,,以AC为直径的半圆交斜边AB于点D,E为BC的中点,连结DE,CD.过点D作于点F.(1)求证:DE是的切线;(2)若,,求的半径.3、元元同学在数学课上遇到这样一个问题:如图1,在平面直角坐标系xOy中,OA经过坐标原点O,并与两坐标轴分别交于B、C两点,点B的坐标为,点D在上,且,求OA的半径和圆心A的坐标.元元的做法如下,请你帮忙补全解题过程:解:如图2,连接BC.作AELOB于E、AF⊥OC于F.∴、(依据是①)∵,∴(依据是②).∵,.∴BC是的直径(依据是③).∴∵,∴A的坐标为(④)的半径为⑤4、如图所示,是⊙的一条弦,,垂足为,交⊙于点,点在⊙上.()若,求的度数.()若,,求的长.5、如图,在直角坐标系中,将△ABC绕点A顺时针旋转90°.(1)画出旋转后的△AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积.6、如图,等腰直角三角形,,,延长至E,使得,以为直角边作,,.(1)若以每秒1个单位的速度沿向右运动,当点E到达点C时停止运动,直接写出在运动过程中与重叠部分面积S与运动时间t(单位:秒)的函数关系式;(2)点M为线段的中点,当(1)中的顶点E运动到点C后,将绕着点C继续顺时针旋转得到,点P是直线上一动点,连接,求的最小值.7、某化妆品专卖店,为了吸引顾客,在“母亲节”当天举办了甲.乙两种品牌化妆品有奖酬宾活动,凡购物满88元,均可得到一次摇奖的机会.已知在摇奖机内装有2个红球和2个白球,除颜色外其他都相同,摇奖者必须从摇奖机内一次连续摇出两个球,根据球的颜色决定送礼金券的多少(如表).甲种品牌化妆品球两红一红一白两白礼金券(元)6126乙种品牌化妆品球两红一红一白两白礼金券(元)12612(1)请你用列表法(或画树状图法)求一次连续摇出一红一白两球的概率;(2)如果一个顾客当天在本店购买满88元,若只考虑获得最多的礼品券,请你帮助分析选择购买哪种品牌的化妆品?并说明理由.-参考答案-一、单选题1、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.2、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可.【详解】解:∵一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,∴抽到每个球的可能性相同,∴布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,∴P(白球).故选:D.【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键.3、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.4、B【分析】根据一元二次方程的定义,二次项系数不为0,四个数中有一个1不能取,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,然后利用概率公式计算即可.【详解】解:当a=1时于x的方程不是一元二次方程,其它三个数都是一元二次方程,a是从“、0、1、2”这四个数中任取的一个数,有四种等可能的结果,其中满足条件的情况有3种,关于x的方程为一元二次方程的概率是,故选择B.【点睛】本题考查一元二次方程的定义,列举法求概率,掌握一元二次方程的定义,列举法求概率方法是解题关键.5、A【分析】根据等边三角形的对称性判断即可.【详解】∵等边三角形是轴对称图形,但不是中心对称图形,∴B,C,D都不符合题意;故选:A.【点睛】本题考查了等边三角形的对称性,熟练掌握等边三角形的对称性是解题的关键.6、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH是等边△ABC的对称轴,∴HB=AB,∴HB=BG,又∵MB旋转到BN,∴BM=BN,在△MBG和△NBH中,,∴△MBG≌△NBH(SAS),∴MG=NH,根据垂线段最短,MG⊥CH时,MG最短,即HN最短,此时∵∠BCH=×60°=30°,CG=AB=×5=2.5,∴MG=CG=,∴HN=,故选A.【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.7、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.8、C【详解】解:选项A是轴对称图形,不是中心对称图形,故A不符合题意;选项B不是轴对称图形,是中心对称图形,故B不符合题意;选项C既是轴对称图形,也是中心对称图形,故C符合题意;选项D是轴对称图形,不是中心对称图形,故D不符合题意;故选C【点睛】本题考查的是轴对称图形的识别,中心对称图形的识别,掌握“轴对称图形与中心对称图形的定义”是解本题的关键,轴对称图形:把一个图形沿某条直线对折,直线两旁的部分能够完全重合;中心对称图形:把一个图形绕某点旋转后能与自身重合.二、填空题1、105【分析】(1)如图,作AH⊥BC于H.根据垂线段最短,求出AH即可解决问题.(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.由△PAC≌△DAK(SAS),推出PC=DK,易知KD⊥BC时,KD的值最小,求出KD的最小值即可解决问题.【详解】解:如图作AH⊥BC于H,∵AB=AC=20,,∴,∵,∴,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10.∴AP的最小值是10;(2)如图,在AB上取一点K,使得AK=AC,连接CK,DK.∵∠ACB=90°,∠B=30°,∴∠CAK=60°,∴∠PAD=∠CAK,∴∠PAC=∠DAK,∵PA=DA,CA=KA,∴△PAC≌△DAK(SAS),∴PC=DK,∵KD⊥BC时,KD的值最小,∵,是等边三角形,∴,∴PC的最小值为5.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.2、##【分析】由旋转的性质可得再利用三角形的外角的性质求解从而可得答案.【详解】解:把△ABC绕点C顺时针旋转某个角度α得到,∠A=30°,∠1=70°,故答案为:【点睛】本题考查的是旋转的性质,三角形的外角的性质,利用性质的性质求解是解本题的关键.3、65【分析】根据切线的性质得到OA⊥AP,根据直角三角形的两锐角互余计算,得到答案.【详解】解:∵PA是⊙O的切线,∴OA⊥AP,∴,∵∠APO=25°,∴,故答案为:65.【点睛】本题考查的是切线的性质、直角三角形的性质,掌握圆的切线垂直于经过切点的半径是解题的关键.4、【分析】由与是等腰直角三角形,得到,,根据全等三角形的性质得到,求得在以为直径的圆上,由的外心为,,得到,如图,当时,的值最小,解直角三角形即可得到结论.【详解】解:与是等腰直角三角形,,,在与中,,≌,,,,在以为直径的圆上,的外心为,,,如图,当时,的值最小,,,,,.则的最小值是,故答案为:.【点睛】本题考查了三角形的外接圆与外心,全等三角形的判定和性质,等腰直角三角形的性质,正确的作出辅助线是解题的关键.5、65【分析】连接OA,OC,OB,根据四边形内角和可得,依据切线的性质及角平分线的判定定理可得DO平分,EO平分,再由各角之间的数量关系可得,,根据等量代换可得,代入求解即可.【详解】解:如图所示:连接OA,OC,OB,∵PA、PB、DE与圆相切于点A、B、E,∴,,,∵,∴,∵,∴DO平分,EO平分,∴,,∴,,∴,故答案为:65.【点睛】题目主要考查圆的切线的性质,角平分线的判定和性质,四边形内角和等,理解题意,作出相应辅助线,综合运用这些知识点是解题关键.6、【分析】如图连接并延长,过点作交于点,,由题意可知为等边三角形,,,在中;在中计算求解即可.【详解】解:如图连接并延长,过点作交于点,由题意可知,,为等边三角形在中在中故答案为:.【点睛】本题考查了旋转的性质,等边三角形,勾股定理,含的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.7、【分析】先列表,再利用表格信息得到所有的等可能的结果数与符合条件的结果数,再利用概率公式进行计算即可.【详解】解:列表如下:12321+2=32+2=42+3=533+1=43+2=53+3=644+1=54+2=64+3=7可得:所有的等可能的结果数有9种,而和为5的结果数有3种,摸出的这两个小球标记的数字之和为5的概率为:故答案为:【点睛】本题考查的是利用列表法或画树状图的方法求解简单随机事件的概率,掌握“列表或画树状图的方法”是解本题的关键.三、解答题1、(1)见解析(2)见解析【分析】(1)由垂径定理可得OD⊥BC、CD=DB、∠CDE=∠BDE,然后说明Rt△CDE≌Rt△BDE,最后运用全等三角形的性质即可证明;(2)由等腰三角形的性质可得∠ECB=∠EBC、∠OCB=∠OBC,再根据CE是切线得到∠OCE=90°,即∠OCB+∠BCE=90°,进而说明BE⊥AB即可证明.(1)证明:∵点D为弦BC中点∴OD⊥BC,CD=DB∴∠CDE=∠BDE在Rt△CDE和Rt△BDECD=BD,∠CDE=∠BDE,DE=DE∴Rt△CDE≌Rt△BDE∴EC=EB.(2)证明:∵EC=EB,OC=OB∴∠ECB=∠EBC,∠OCB=∠OBC,∵CE是切线∴∠OCE=90°,即∠OCB+∠BCE=90°∴∠OBC+∠EBC=90°,即BE⊥AB∴BE是的切线.【点睛】本题主要考查了垂径定理、全等三角形的判定与性质、切线的证明、等腰三角形的性质等知识点,掌握垂径定理是解答本题的关键.2、(1)见解析(2)【分析】(1)连接,先根据等腰三角形的性质可得,再根据圆周角定理可得,然后根据直角三角形的性质可得,根据等腰三角形的性质可得,从而可得,最后根据圆的切线的判定即可得证;(2)连接,先利用勾股定理可得,设的半径为,从而可得,再在中,利用勾股定理即可得.(1)证明:如图,连接,,,是的直径,,,点是的中点,,,,即,又是的半径,是的切线;(2)解:如图,连接,,,设的半径为,则,在中,,即,解得,故的半径为.【点睛】本题考查了圆周角定理、等腰三角形的性质、圆的切线的判定、勾股定理等知识点,熟练掌握圆周角定理和圆的切线的判定是解题关键.3、垂径定理,圆周角定理,圆周角定理,(1,),2【分析】根据垂径定理,圆周角定理依次分析解答.【详解】解:如图2,连接BC.作AE⊥OB于E、AF⊥OC于F.∴、(依据是垂径定理)∵,∴(依据是圆周角定理).∵,.∴BC是的直径(依据是圆周角定理).∴,∵,∴A的坐标为(1,),的半径为2,故答案为:垂径定理,圆周角定理,圆周角定理,(1,),2.【点睛】此题考查了圆的知识,垂径定理、圆周角定理,熟记各定理知识并综合应用是解题的关键.4、(1)26°;(2)8【分析】(1)欲求,又已知一圆心角,可利用圆周角与圆心角的关系求解;(2)利用垂径定理可以得到,从而得到结论.【详解】解:(1),,.(2)∵,,且,∴,∵,,.【点睛】此题考查了圆周角定理,同圆中等弧所对的圆周角相等,以及垂径定理,熟练掌握垂径定理得出是解题关键.5、(1)作图见解析,、;(2)【分析】(1)将绕点A顺时针旋转90°得,根据点A、B、C坐标,即可确定出点、的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案.【详解】(1)将绕点A顺时针旋转90°得如图所示:∴、;(2)由图可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 救灾工作的原则与方法
- 海尔新员工工作总结
- 2025版尿路感染常见症状诠释及护理要领
- 量化工作体系构建与应用
- 催乳技术与方法
- 2025版甲亢常见症状及护理要点详解
- 公文写作方法
- 部门人员工作安排
- 商业性展厅设计
- 摩尔根基因在染色体上方法
- 2025-2030儿童绘本出版行业市场发展与竞争战略研究报告
- 水路运输经济季度波动性分析及预测模型构建
- 骨肉瘤护理查房
- 医保课件模板
- 呼吸科门诊综合诊疗室
- 企业十一期间安全培训课件
- VTE相关知识培训课件
- 2025年公开遴选公务员笔试复习策略与计划制定
- 湖南省永州市2025年-2026年小学六年级数学期末考试(上学期)试卷及答案
- 第十三讲蛋白质分子设计
- 扭力扳手知识培训课件
评论
0/150
提交评论